The role of HDAC2 inhibition in cardioprotection against doxorubicin-induced myocardial injury.

IF 2.8 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Frontiers in Cardiovascular Medicine Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.3389/fcvm.2025.1557119
Jinsha Liu, Wenwen Fu, Xue Wang, Zuowen Liang, Fanbo Meng
{"title":"The role of HDAC2 inhibition in cardioprotection against doxorubicin-induced myocardial injury.","authors":"Jinsha Liu, Wenwen Fu, Xue Wang, Zuowen Liang, Fanbo Meng","doi":"10.3389/fcvm.2025.1557119","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The molecular mechanisms underlying cardioprotection against doxorubicin (DOX)-induced myocardial injury are poorly understood. Histone deacetylase 2 (HDAC2) plays a significant role in oxidative stress, apoptosis, and mitochondrial dysfunction and is implicated in many human diseases, This study investigated the relationship between HDAC2 expression and DOX-induced myocardial injury using the <i>in vivo</i> rat model of DOX-induced cardiotoxicity and <i>in vitro</i> experiments with the H9c2 cardiomyocytes.</p><p><strong>Methods: </strong>The rat model of DOX-induced myocardial injury was established by administering DOX via intraperitoneal injections. HDAC2 expression was suppressed by administering rats with sodium butyrate (SB) via intraperitoneal injections. Echocardiography measurements were performed at baseline and on day 15 post-treatment. The rats were euthanized on day 15 and cardiac tissues were harvested. The cardiac tissue samples were analyzed by hematoxylin and eosin H&E staining, immunohistochemistry, Masson staining, Sirius Red staining, TUNEL staining, and western blotting to determine the status of HDAC2 expression and myocardial apoptosis. In the vitro experiments, H9c2 cells were treated with DOX. HDAC2 expression was suppressed using sodium butyrate or transfected cells with the shRNA knockdown HDAC2 (shHDAC2). The H9c2 cells from different groups were analyzed by Rt-qPCR, CCK-8 cell viability assay, and western blotting to determine the status of HDAC2 expression and cardiomyocyte apoptosis.</p><p><strong>Results: </strong>DOX treatment induced cardiac dysfunction in rats. The cardiac tissues of the DOX-treated rats and H9c2 cells showed significantly higher levels of HDAC2 compared to the corresponding controls. However, inhibition of HDAC2 significantly mitigated DOX-induced myocardial injury in rats. This suggested a strong association between HDAC2 expression and DOX-induced myocardial injury. In the H9c2 cells, HDAC2 knockdown by shHDAC2 alleviated DOX-induced apoptosis by enhacing AKT phosphorylation. These findings demonstrated that HDAC2 silencing protected against DOX-induced cardiomyocyte apoptosis by activating the PI3K/AKT signaling pathway.</p><p><strong>Conclusion: </strong>Suppressing HDAC2 protected against DOX-induced cardiomyocyte apoptosis by activating the PI3K/AKT signaling pathway. Therefore, HDAC2 is a promising therapeutic target for mitigating DOX-induced myocardial injury.</p>","PeriodicalId":12414,"journal":{"name":"Frontiers in Cardiovascular Medicine","volume":"12 ","pages":"1557119"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cardiovascular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcvm.2025.1557119","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The molecular mechanisms underlying cardioprotection against doxorubicin (DOX)-induced myocardial injury are poorly understood. Histone deacetylase 2 (HDAC2) plays a significant role in oxidative stress, apoptosis, and mitochondrial dysfunction and is implicated in many human diseases, This study investigated the relationship between HDAC2 expression and DOX-induced myocardial injury using the in vivo rat model of DOX-induced cardiotoxicity and in vitro experiments with the H9c2 cardiomyocytes.

Methods: The rat model of DOX-induced myocardial injury was established by administering DOX via intraperitoneal injections. HDAC2 expression was suppressed by administering rats with sodium butyrate (SB) via intraperitoneal injections. Echocardiography measurements were performed at baseline and on day 15 post-treatment. The rats were euthanized on day 15 and cardiac tissues were harvested. The cardiac tissue samples were analyzed by hematoxylin and eosin H&E staining, immunohistochemistry, Masson staining, Sirius Red staining, TUNEL staining, and western blotting to determine the status of HDAC2 expression and myocardial apoptosis. In the vitro experiments, H9c2 cells were treated with DOX. HDAC2 expression was suppressed using sodium butyrate or transfected cells with the shRNA knockdown HDAC2 (shHDAC2). The H9c2 cells from different groups were analyzed by Rt-qPCR, CCK-8 cell viability assay, and western blotting to determine the status of HDAC2 expression and cardiomyocyte apoptosis.

Results: DOX treatment induced cardiac dysfunction in rats. The cardiac tissues of the DOX-treated rats and H9c2 cells showed significantly higher levels of HDAC2 compared to the corresponding controls. However, inhibition of HDAC2 significantly mitigated DOX-induced myocardial injury in rats. This suggested a strong association between HDAC2 expression and DOX-induced myocardial injury. In the H9c2 cells, HDAC2 knockdown by shHDAC2 alleviated DOX-induced apoptosis by enhacing AKT phosphorylation. These findings demonstrated that HDAC2 silencing protected against DOX-induced cardiomyocyte apoptosis by activating the PI3K/AKT signaling pathway.

Conclusion: Suppressing HDAC2 protected against DOX-induced cardiomyocyte apoptosis by activating the PI3K/AKT signaling pathway. Therefore, HDAC2 is a promising therapeutic target for mitigating DOX-induced myocardial injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Cardiovascular Medicine
Frontiers in Cardiovascular Medicine Medicine-Cardiology and Cardiovascular Medicine
CiteScore
3.80
自引率
11.10%
发文量
3529
审稿时长
14 weeks
期刊介绍: Frontiers? Which frontiers? Where exactly are the frontiers of cardiovascular medicine? And who should be defining these frontiers? At Frontiers in Cardiovascular Medicine we believe it is worth being curious to foresee and explore beyond the current frontiers. In other words, we would like, through the articles published by our community journal Frontiers in Cardiovascular Medicine, to anticipate the future of cardiovascular medicine, and thus better prevent cardiovascular disorders and improve therapeutic options and outcomes of our patients.
期刊最新文献
A giant and rapid myocardial remodeling due to fatal giant cell myocarditis: a case report. Bioinformatics analysis of the expression of potential common genes and immune-related genes between atrial fibrillation and chronic kidney disease. Burden, risk factors, and projections of ischemic heart disease in China (1990-2021): findings from the 2021 GBD study. Interventional closure of artificial vascular anastomotic fistula after aortic replacement: a case report. The role of HDAC2 inhibition in cardioprotection against doxorubicin-induced myocardial injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1