James Dimou, Giovanna D'Abaco, Lucy Paradiso, Nicole Kountouri, Wayne Ng, Stanley Stylli, Katharine Drummond, Antony Burgess, Andrew Kaye, Andrew Morokoff
{"title":"Akt inhibition is effective against PTEN-deleted, chemoirradiation-resistant glioblastoma stem cells.","authors":"James Dimou, Giovanna D'Abaco, Lucy Paradiso, Nicole Kountouri, Wayne Ng, Stanley Stylli, Katharine Drummond, Antony Burgess, Andrew Kaye, Andrew Morokoff","doi":"10.1080/08977194.2025.2470185","DOIUrl":null,"url":null,"abstract":"<p><p>Activated Akt and loss of phosphatase and tensin homolog (PTEN) tumour suppression aid chemo- and radio-resistance in glioblastoma stem cells (GSC), contributing to treatment failure in glioblastoma. In this study, sixteen GSC lines were generated from 66 individual glioma samples, in gliomasphere culture conditions. Thirteen of 16 GSC lines expressed hyperphosphorylated Akt (Ser473); Akt phosphorylation did not correlated with EGFR expression. An LDH colorimetric assay was used to measure the in vitro cytotoxicity of eight of these lines. Akt X (20 µM) proved more effective at inducing in vitro GSC cytotoxicity (range: 22-73%) over 48 hours than triciribine (20 µM) (0-27%), although both agents inhibited Akt phosphorylation as detected by western blot analysis. A statistically significant correlation between PTEN loss (western blot) and the extent of Akt X-induced cytotoxicity was found (p = 0.03). Akt inhibition reduces in vitro proliferation of treatment-resistant GSC lines, especially in PTEN-deficient lines, warranting further translational investigation in glioblastoma.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":" ","pages":"1-17"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Growth factors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08977194.2025.2470185","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Activated Akt and loss of phosphatase and tensin homolog (PTEN) tumour suppression aid chemo- and radio-resistance in glioblastoma stem cells (GSC), contributing to treatment failure in glioblastoma. In this study, sixteen GSC lines were generated from 66 individual glioma samples, in gliomasphere culture conditions. Thirteen of 16 GSC lines expressed hyperphosphorylated Akt (Ser473); Akt phosphorylation did not correlated with EGFR expression. An LDH colorimetric assay was used to measure the in vitro cytotoxicity of eight of these lines. Akt X (20 µM) proved more effective at inducing in vitro GSC cytotoxicity (range: 22-73%) over 48 hours than triciribine (20 µM) (0-27%), although both agents inhibited Akt phosphorylation as detected by western blot analysis. A statistically significant correlation between PTEN loss (western blot) and the extent of Akt X-induced cytotoxicity was found (p = 0.03). Akt inhibition reduces in vitro proliferation of treatment-resistant GSC lines, especially in PTEN-deficient lines, warranting further translational investigation in glioblastoma.
期刊介绍:
Growth Factors is an international and interdisciplinary vehicle publishing new knowledge and findings on the regulators of cell proliferation, differentiation and survival. The Journal will publish research papers, short communications and reviews on current developments in cell biology, biochemistry, physiology or pharmacology of growth factors, cytokines or hormones which improve our understanding of biology or medicine. Among the various fields of study topics of particular interest include: •Stem cell biology •Growth factor physiology •Structure-activity relationships •Drug development studies •Clinical applications