Biodetoxification of both AFB1 and ZEN by Bacillus subtilis ZJ-2019-1 in gastrointestinal environment and in mice.

IF 2.6 4区 医学 Q2 MYCOLOGY Mycotoxin Research Pub Date : 2025-03-12 DOI:10.1007/s12550-025-00585-2
Jianwen Wu, Wei An, Zhenlong Wang, Boquan Gao, Jiaxue Wang, Ya Zhao, Bing Han, Hui Tao, Yaping Guo, Jinquan Wang, Xiumin Wang
{"title":"Biodetoxification of both AFB1 and ZEN by Bacillus subtilis ZJ-2019-1 in gastrointestinal environment and in mice.","authors":"Jianwen Wu, Wei An, Zhenlong Wang, Boquan Gao, Jiaxue Wang, Ya Zhao, Bing Han, Hui Tao, Yaping Guo, Jinquan Wang, Xiumin Wang","doi":"10.1007/s12550-025-00585-2","DOIUrl":null,"url":null,"abstract":"<p><p>Aflatoxin B1 (AFB1) and zearalenone (ZEN) are the most prevalent mycotoxins in production, posing a serious threat to human and animal health. Therefore, it is very urgent to find a safe and efficient method for the biodegradation of these mycotoxins. Our previous study demonstrated that Bacillus subtilis ZJ-2019-1 moderately degrades both mycotoxins in vitro and ZEN in female gilts. In this study, we assessed the effect of B. subtilis ZJ-2019-1 on AFB1 and ZEN degradation in naturally moldy corn gluten meal in a gastrointestinal environment while also evaluating the cytotoxicity of degradation products using the Cell Counting Kit-8 (CCK-8) assay. The efficacy of B. subtilis in degrading mycotoxins was further evaluated by orally administering 5 mg/kg AFB1 and 50 mg/kg ZEN to mice, followed by treatment with B. subtilis ZJ-2019-1 for 15 d. The results showed that B. subtilis ZJ-2019-1 moderately degraded both AFB1 and ZEN present in naturally moldy corn gluten meal in simulated small intestinal fluids, with degradation rates reaching 14.71% for AFB1 and 19.53% for ZEN respectively. Following degradation by B. subtilis ZJ-2019-1, the toxicity of resulting products from both AFB1 and ZEN decreased by 11.68-46.41% and 42.62-59.25%, respectively. Moreover, oral administration of B. subtilis ZJ-2019-1 exhibited remarkable detoxification effects on AFB1 and ZEN in mice, as evidenced by significant restoration of abnormal serum biochemical indices (including aspartate aminotransferase/alanine transaminase, alkaline phosphatase, total cholesterol, etc.) and alleviation of liver, intestine, and uterine damage caused by mycotoxins in mice. These findings indicate that B. subtilis ZJ-2019-1 possesses the ability to moderately degrade both AFB1 and ZEN, making it a promising candidate for biodegrading multi-mycotoxin contaminants in food and feed.</p>","PeriodicalId":19060,"journal":{"name":"Mycotoxin Research","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycotoxin Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12550-025-00585-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aflatoxin B1 (AFB1) and zearalenone (ZEN) are the most prevalent mycotoxins in production, posing a serious threat to human and animal health. Therefore, it is very urgent to find a safe and efficient method for the biodegradation of these mycotoxins. Our previous study demonstrated that Bacillus subtilis ZJ-2019-1 moderately degrades both mycotoxins in vitro and ZEN in female gilts. In this study, we assessed the effect of B. subtilis ZJ-2019-1 on AFB1 and ZEN degradation in naturally moldy corn gluten meal in a gastrointestinal environment while also evaluating the cytotoxicity of degradation products using the Cell Counting Kit-8 (CCK-8) assay. The efficacy of B. subtilis in degrading mycotoxins was further evaluated by orally administering 5 mg/kg AFB1 and 50 mg/kg ZEN to mice, followed by treatment with B. subtilis ZJ-2019-1 for 15 d. The results showed that B. subtilis ZJ-2019-1 moderately degraded both AFB1 and ZEN present in naturally moldy corn gluten meal in simulated small intestinal fluids, with degradation rates reaching 14.71% for AFB1 and 19.53% for ZEN respectively. Following degradation by B. subtilis ZJ-2019-1, the toxicity of resulting products from both AFB1 and ZEN decreased by 11.68-46.41% and 42.62-59.25%, respectively. Moreover, oral administration of B. subtilis ZJ-2019-1 exhibited remarkable detoxification effects on AFB1 and ZEN in mice, as evidenced by significant restoration of abnormal serum biochemical indices (including aspartate aminotransferase/alanine transaminase, alkaline phosphatase, total cholesterol, etc.) and alleviation of liver, intestine, and uterine damage caused by mycotoxins in mice. These findings indicate that B. subtilis ZJ-2019-1 possesses the ability to moderately degrade both AFB1 and ZEN, making it a promising candidate for biodegrading multi-mycotoxin contaminants in food and feed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mycotoxin Research
Mycotoxin Research MYCOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
6.40
自引率
6.70%
发文量
29
期刊介绍: Mycotoxin Research, the official publication of the Society for Mycotoxin Research, is a peer-reviewed, scientific journal dealing with all aspects related to toxic fungal metabolites. The journal publishes original research articles and reviews in all areas dealing with mycotoxins. As an interdisciplinary platform, Mycotoxin Research welcomes submission of scientific contributions in the following research fields: - Ecology and genetics of mycotoxin formation - Mode of action of mycotoxins, metabolism and toxicology - Agricultural production and mycotoxins - Human and animal health aspects, including exposure studies and risk assessment - Food and feed safety, including occurrence, prevention, regulatory aspects, and control of mycotoxins - Environmental safety and technology-related aspects of mycotoxins - Chemistry, synthesis and analysis.
期刊最新文献
Adsorptive potential of two natural enterosorbents for removing aflatoxin B1 under simulated gastric and small intestinal conditions. Protective effect of curcumin against endoplasmic reticulum stress and lipid metabolism disorders in AFB1-intoxicated duck liver. Biodetoxification of both AFB1 and ZEN by Bacillus subtilis ZJ-2019-1 in gastrointestinal environment and in mice. Biological properties of activated bentonite vs. non-activated bentonite in mice fed an aflatoxin-contaminated diet: a comparative investigation. Aqueous Vernonia amygdalina leaf extract in drinking water mitigates aflatoxin B1 toxicity in broilers: effects on performance, biomarker analysis, and liver histology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1