Efficient Extraction, Chemical Characterization, and Bioactivity of Essential Oil From Pine Needles.

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Phytochemical Analysis Pub Date : 2025-03-13 DOI:10.1002/pca.3529
Zhengyun Liang, Jiamin Yan, Sidan Zhao, Lingxiao He, Xinxu Zhao, Lingchao Cai, Chaoqun You, Fei Wang
{"title":"Efficient Extraction, Chemical Characterization, and Bioactivity of Essential Oil From Pine Needles.","authors":"Zhengyun Liang, Jiamin Yan, Sidan Zhao, Lingxiao He, Xinxu Zhao, Lingchao Cai, Chaoqun You, Fei Wang","doi":"10.1002/pca.3529","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pine needles are a rich source of bioactive compounds, and there are few reports on the extraction and identification of active substances in various types of pine needles.</p><p><strong>Objectives: </strong>The objective of this study is to enhance the efficiency and yield of pine needle essential oil extraction by employing an innovative ultrasonic-assisted salt-out hydrodistillation technology. It also aims to establish a correlation between gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) to distinguish essential oils from Cedrus deodara, Pinus thunbergii, Pinus massoniana, and Pinus koraiensis.</p><p><strong>Methods: </strong>Optimal extraction conditions will be determined through dynamic curve fitting and response surface analysis. Essential oils will be analyzed by E-nose and GC-MS coupled with chemometrics. Radical-scavenging effects on ·OH, DPPH·, ABTS<sup>+</sup> radicals, and antibacterial activity against Escherichia coli and Staphylococcus aureus will be evaluated.</p><p><strong>Results: </strong>Optimal extraction conditions were 100 min of distillation, 7.762% sodium chloride, 9.596-mL/g liquid material ratio, and 170.155-W ultrasonic power. Essential oil yields were 0.144%, 0.214%, 0.425%, and 0.852% for C. deodara, P. thunbergii, P. massoniana, and P. koraiensis, respectively. GC-MS identified 74 volatile components. PLS-DA revealed nine key compounds, including α-Myrcene, α-Pinene, α-Phellandrene, Limonene, Caryophyllene, Bornyl acetate, β-Pinene, Germacrene D, and Camphene. PCA of E-nose and GC-MS data highlighted sample differences. All essential oils exhibited antioxidant and antibacterial activities, linked to α-pinene, β-Pinene, and Germacrene D.</p><p><strong>Conclusion: </strong>This study introduces efficient methods for efficient extraction and characterization of pine needle essential oils, providing a foundation for bioactive applications and enhancing product quality and global innovation in the industry.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3529","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Pine needles are a rich source of bioactive compounds, and there are few reports on the extraction and identification of active substances in various types of pine needles.

Objectives: The objective of this study is to enhance the efficiency and yield of pine needle essential oil extraction by employing an innovative ultrasonic-assisted salt-out hydrodistillation technology. It also aims to establish a correlation between gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) to distinguish essential oils from Cedrus deodara, Pinus thunbergii, Pinus massoniana, and Pinus koraiensis.

Methods: Optimal extraction conditions will be determined through dynamic curve fitting and response surface analysis. Essential oils will be analyzed by E-nose and GC-MS coupled with chemometrics. Radical-scavenging effects on ·OH, DPPH·, ABTS+ radicals, and antibacterial activity against Escherichia coli and Staphylococcus aureus will be evaluated.

Results: Optimal extraction conditions were 100 min of distillation, 7.762% sodium chloride, 9.596-mL/g liquid material ratio, and 170.155-W ultrasonic power. Essential oil yields were 0.144%, 0.214%, 0.425%, and 0.852% for C. deodara, P. thunbergii, P. massoniana, and P. koraiensis, respectively. GC-MS identified 74 volatile components. PLS-DA revealed nine key compounds, including α-Myrcene, α-Pinene, α-Phellandrene, Limonene, Caryophyllene, Bornyl acetate, β-Pinene, Germacrene D, and Camphene. PCA of E-nose and GC-MS data highlighted sample differences. All essential oils exhibited antioxidant and antibacterial activities, linked to α-pinene, β-Pinene, and Germacrene D.

Conclusion: This study introduces efficient methods for efficient extraction and characterization of pine needle essential oils, providing a foundation for bioactive applications and enhancing product quality and global innovation in the industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytochemical Analysis
Phytochemical Analysis 生物-分析化学
CiteScore
6.00
自引率
6.10%
发文量
88
审稿时长
1.7 months
期刊介绍: Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.
期刊最新文献
Characterization and Identification of the Chemical Constituents and the Metabolites of Geum japonicum Thunb. var. chinense F. Bolle. Efficient Extraction, Chemical Characterization, and Bioactivity of Essential Oil From Pine Needles. Chemical Recognition and Spectrum-Effect Relationship of UPLC-MS Chromatograms With Anti-Complementary and Antioxidant Activities of Myricariae Ramulus. Quality Control Strategies for Differentiation of Kalanchoe Species. A Validated GC-MS Method for Major Terpenes Quantification in Hydrodistilled Cannabis sativa Essential oil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1