Research and analysis of differential gene expression in CD34 hematopoietic stem cells in myelodysplastic syndromes.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES PLoS ONE Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0315408
Min-Xiao Wang, Chang-Sheng Liao, Xue-Qin Wei, Yu-Qin Xie, Peng-Fei Han, Yan-Hui Yu
{"title":"Research and analysis of differential gene expression in CD34 hematopoietic stem cells in myelodysplastic syndromes.","authors":"Min-Xiao Wang, Chang-Sheng Liao, Xue-Qin Wei, Yu-Qin Xie, Peng-Fei Han, Yan-Hui Yu","doi":"10.1371/journal.pone.0315408","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.</p><p><strong>Methods: </strong>Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set. To ensure data consistency and comparability, we standardized the training sets and removed batch effects using the ComBat algorithm, thereby integrating them into a unified gene expression dataset. Subsequently, we conducted differential expression analysis to identify genes with significant changes in expression levels across different disease states. In order to enhance prediction accuracy, we incorporated six common predictive models and trained them based on the filtered differential gene expression dataset. After comprehensive evaluation, we ultimately selected three algorithms-Lasso regression, random forest, and support vector machine (SVM)-as our core predictive models. To more precisely pinpoint genes closely related to disease characteristics, we utilized the aforementioned three machine learning methods for prediction and took the intersection of these prediction results, yielding a more robust list of genes associated with disease features. Following this, we conducted in-depth analysis of these key genes in the training set and validated the results independently using the GSE19429 dataset. Furthermore, we performed differential analysis of gene groups, co-expression analysis, and enrichment analysis to delve deeper into the mechanisms underlying the roles of these genes in disease initiation and progression. Through these analyses, we aim to provide new insights and foundations for disease diagnosis and treatment. Figure illustrates the data preprocessing and analysis workflow of this study.</p><p><strong>Results: </strong>Our analysis of differentially expressed genes (DEGs) in CD34+ hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) revealed significant differences in gene expression patterns compared to the control group (individuals without MDS). Specifically, the expression levels of two key genes, IRF4 and ELANE, were notably downregulated in CD34+ HSCs of MDS patients, indicating their downregulatory roles in the pathological process of MDS.</p><p><strong>Conclusion: </strong>This study sheds light on the potential molecular mechanisms underlying MDS, with a particular focus on the pivotal roles of IRF4 and ELANE as key pathogenic genes. Our findings provide a novel perspective for understanding the complexity of MDS and exploring therapeutic strategies. They may also guide the development of precise and effective treatments, such as targeted interventions directed against these genes.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0315408"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0315408","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.

Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set. To ensure data consistency and comparability, we standardized the training sets and removed batch effects using the ComBat algorithm, thereby integrating them into a unified gene expression dataset. Subsequently, we conducted differential expression analysis to identify genes with significant changes in expression levels across different disease states. In order to enhance prediction accuracy, we incorporated six common predictive models and trained them based on the filtered differential gene expression dataset. After comprehensive evaluation, we ultimately selected three algorithms-Lasso regression, random forest, and support vector machine (SVM)-as our core predictive models. To more precisely pinpoint genes closely related to disease characteristics, we utilized the aforementioned three machine learning methods for prediction and took the intersection of these prediction results, yielding a more robust list of genes associated with disease features. Following this, we conducted in-depth analysis of these key genes in the training set and validated the results independently using the GSE19429 dataset. Furthermore, we performed differential analysis of gene groups, co-expression analysis, and enrichment analysis to delve deeper into the mechanisms underlying the roles of these genes in disease initiation and progression. Through these analyses, we aim to provide new insights and foundations for disease diagnosis and treatment. Figure illustrates the data preprocessing and analysis workflow of this study.

Results: Our analysis of differentially expressed genes (DEGs) in CD34+ hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) revealed significant differences in gene expression patterns compared to the control group (individuals without MDS). Specifically, the expression levels of two key genes, IRF4 and ELANE, were notably downregulated in CD34+ HSCs of MDS patients, indicating their downregulatory roles in the pathological process of MDS.

Conclusion: This study sheds light on the potential molecular mechanisms underlying MDS, with a particular focus on the pivotal roles of IRF4 and ELANE as key pathogenic genes. Our findings provide a novel perspective for understanding the complexity of MDS and exploring therapeutic strategies. They may also guide the development of precise and effective treatments, such as targeted interventions directed against these genes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
期刊最新文献
Conditioned medium of engineering macrophages combined with soluble microneedles promote diabetic wound healing. Comparison between Go-GutDx, a novel diagnostic stool test kit with potential impact in low-income countries, and BioFire test. The causal effects of inflammatory bowel disease on its ocular manifestations: A Mendelian randomization study. Coping with chronic periprosthetic joint infection after failed revision of total knee and hip arthroplasty: a qualitative study on patient's experiences in treatment and healing. Correction: LightGBM hybrid model based DEM correction for forested areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1