{"title":"Glycine-Group-Functionalized Polymeric Materials Impregnated with Zn(II) Used in the Photocatalytic Degradation of Congo Red Dye.","authors":"Laura Cocheci, Aurelia Visa, Bianca Maranescu, Lavinia Lupa, Aniela Pop, Ecaterina Stela Dragan, Adriana Popa","doi":"10.3390/polym17050641","DOIUrl":null,"url":null,"abstract":"<p><p>Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic loads used in its preparation. The degradation of organic dyes of the CR type was investigated using the photocatalytic activity of functionalized polymers. We have employed photodegradation procedures for both polymer-supported glycine groups (Code: AP2) and polymer-supported glycine-Zn(II) (Code: AP2-Zn(II)). A photocatalysis efficiency of 89.2% was achieved for glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (AP2) and 95.4% for the AP2-Zn(II) sample by using an initial concentration of CR of 15 mg/L, a catalyst concentration of 1 g/L, and 240 min of photocatalysis. The findings provided here have shown that the two materials (AP2 and AP2-Zn(II)) may be effectively employed in the heterogeneous photocatalysis method to remove CR from water. From the perspective of the degradation mechanism of CR, the two photocatalysts act similarly.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902704/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050641","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic loads used in its preparation. The degradation of organic dyes of the CR type was investigated using the photocatalytic activity of functionalized polymers. We have employed photodegradation procedures for both polymer-supported glycine groups (Code: AP2) and polymer-supported glycine-Zn(II) (Code: AP2-Zn(II)). A photocatalysis efficiency of 89.2% was achieved for glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (AP2) and 95.4% for the AP2-Zn(II) sample by using an initial concentration of CR of 15 mg/L, a catalyst concentration of 1 g/L, and 240 min of photocatalysis. The findings provided here have shown that the two materials (AP2 and AP2-Zn(II)) may be effectively employed in the heterogeneous photocatalysis method to remove CR from water. From the perspective of the degradation mechanism of CR, the two photocatalysts act similarly.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.