Electrospun Coaxial Polycaprolactone/Polyvinylpyrrolidone Fibers Containing Cisplatin: A Potential Local Chemotherapy Delivery System for Cervical Cancer Treatment.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2025-02-27 DOI:10.3390/polym17050637
Mariana Sarai Silva-López, Vladimir Alonso Escobar-Barrios, Luz Eugenia Alcántara-Quintana
{"title":"Electrospun Coaxial Polycaprolactone/Polyvinylpyrrolidone Fibers Containing Cisplatin: A Potential Local Chemotherapy Delivery System for Cervical Cancer Treatment.","authors":"Mariana Sarai Silva-López, Vladimir Alonso Escobar-Barrios, Luz Eugenia Alcántara-Quintana","doi":"10.3390/polym17050637","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin, a frequently used chemotherapeutic for the treatment of cervical cancer, causes adverse effects that limit its use. Treatment with local therapy that limits toxicity remains a challenge. The aim of this study was to develop a local intravaginal cisplatin delivery system of polycaprolactone/polyvinylpyrrolidone sheath/core fibers by coaxial electrospinning. Physicochemical properties, degradation rate, mucoadhesion, release profile, and in vitro biosafety assays were characterized. Microscopy images confirmed the coaxial nature of the fibers and showed continuous morphology and diameters of 3-9 µm. The combination of polymers improved their mechanical properties. The contact angle < 85° indicated a hydrophilic surface, which would allow its dissolution in the vaginal environment. The release profile showed a rapid initial release followed by a slow and sustained release over eight days. The degradation test showed ~50% dissolution of the fibers on day 10. The adhesion of the fibrous device to the vaginal wall lasted for more than 15 days, which was sufficient time to allow the release of cisplatin. The biosafety tests showed great cytocompatibility and no hemolysis. The characteristics of the developed system open the possibility of its application as a localized therapy against cervical cancer, reducing adverse effects and improving the quality of life of patients.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050637","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cisplatin, a frequently used chemotherapeutic for the treatment of cervical cancer, causes adverse effects that limit its use. Treatment with local therapy that limits toxicity remains a challenge. The aim of this study was to develop a local intravaginal cisplatin delivery system of polycaprolactone/polyvinylpyrrolidone sheath/core fibers by coaxial electrospinning. Physicochemical properties, degradation rate, mucoadhesion, release profile, and in vitro biosafety assays were characterized. Microscopy images confirmed the coaxial nature of the fibers and showed continuous morphology and diameters of 3-9 µm. The combination of polymers improved their mechanical properties. The contact angle < 85° indicated a hydrophilic surface, which would allow its dissolution in the vaginal environment. The release profile showed a rapid initial release followed by a slow and sustained release over eight days. The degradation test showed ~50% dissolution of the fibers on day 10. The adhesion of the fibrous device to the vaginal wall lasted for more than 15 days, which was sufficient time to allow the release of cisplatin. The biosafety tests showed great cytocompatibility and no hemolysis. The characteristics of the developed system open the possibility of its application as a localized therapy against cervical cancer, reducing adverse effects and improving the quality of life of patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Identification of Aged Polypropylene with Machine Learning and Near-Infrared Spectroscopy for Improved Recycling. Bicomponent Electrospinning of PVDF-Based Nanofiber Membranes for Air Filtration and Oil-Water Separation. Influence of Surface Treatment and Protracted Ageing on the Shear Bond Strength of Orthodontic Brackets to Two Digitally Fabricated (Milled and 3D-Printed) Polymethacrylate-Based Provisional Crowns. Investigations on Thermal Transitions in PDPP4T/PCPDTBT/AuNPs Composite Films Using Variable Temperature Ellipsometry. Kinetic Study of In Vitro Release of Neem from Chitosan Biopolymer and Assessment of Its Biological Effectiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1