Renata Siqueira de Mello, Carolina Adriane Bento, Rafael de Oliveira Faria, Vanessa Fernandes Arnaud-Sampaio, Henning Ulrich, Mariana Yasue Saito Miyagi, Gabriel Lima Barros de Araujo, Claudiana Lameu
{"title":"Effects of nanoflubendazole and purinergic signaling modulation in overcoming neuroblastoma chemoresistance.","authors":"Renata Siqueira de Mello, Carolina Adriane Bento, Rafael de Oliveira Faria, Vanessa Fernandes Arnaud-Sampaio, Henning Ulrich, Mariana Yasue Saito Miyagi, Gabriel Lima Barros de Araujo, Claudiana Lameu","doi":"10.1007/s11302-025-10078-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastoma is a pediatric tumor accounting for approximately 8% of childhood cancers and is associated with high mortality rates among children aged 1 to 5 years. Standard treatments often fall short, leading to recurrence and metastasis due to the development of chemoresistance. A promising approach to address this challenge involves targeting purinergic signaling pathways and drug repurposing. The combination of flubendazole in nanoformulation and vincristine exhibited synergistic effects in ACN cells, enhancing treatment efficacy. Vincristine combined with the P2X7 receptor antagonist Brilliant Blue-G showed antagonistic effects, and interactions between nanoFBZ and Brilliant Blue-G were dose-dependent. Furthermore, ACN cells exposed to 213 nM of vincristine weekly for three weeks resulted in vincristine-resistant cells with significantly higher resistance (IC<sub>50</sub> approximately 300 times greater) compared to parental cells. P2Y<sub>2</sub> receptor expression was augmented in vincristine-resistant cells, particularly after treatment with nanoFBZ and Brilliant Blue-G, while adenosine A1, A2B, and P2Y<sub>6</sub> receptor expression levels decreased. P2X7 receptor expression was also reduced in vincristine-resistant cells treated with nanoFBZ. P2X7 receptor agonism and P2Y<sub>2</sub> receptor blockade slightly elevated resistance. In conclusion, this study suggests that combining nanoFBZ with vincristine chemotherapy may offer a promising strategy for improving the treatment efficacy of neuroblastoma. The synergy between nanoFBZ and vincristine enhanced therapeutic outcomes, and P2X7 receptor antagonism further reduced neuroblastoma cell viability.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10078-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroblastoma is a pediatric tumor accounting for approximately 8% of childhood cancers and is associated with high mortality rates among children aged 1 to 5 years. Standard treatments often fall short, leading to recurrence and metastasis due to the development of chemoresistance. A promising approach to address this challenge involves targeting purinergic signaling pathways and drug repurposing. The combination of flubendazole in nanoformulation and vincristine exhibited synergistic effects in ACN cells, enhancing treatment efficacy. Vincristine combined with the P2X7 receptor antagonist Brilliant Blue-G showed antagonistic effects, and interactions between nanoFBZ and Brilliant Blue-G were dose-dependent. Furthermore, ACN cells exposed to 213 nM of vincristine weekly for three weeks resulted in vincristine-resistant cells with significantly higher resistance (IC50 approximately 300 times greater) compared to parental cells. P2Y2 receptor expression was augmented in vincristine-resistant cells, particularly after treatment with nanoFBZ and Brilliant Blue-G, while adenosine A1, A2B, and P2Y6 receptor expression levels decreased. P2X7 receptor expression was also reduced in vincristine-resistant cells treated with nanoFBZ. P2X7 receptor agonism and P2Y2 receptor blockade slightly elevated resistance. In conclusion, this study suggests that combining nanoFBZ with vincristine chemotherapy may offer a promising strategy for improving the treatment efficacy of neuroblastoma. The synergy between nanoFBZ and vincristine enhanced therapeutic outcomes, and P2X7 receptor antagonism further reduced neuroblastoma cell viability.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.