{"title":"Umbilical mesenchymal stem cells mitigate T-cell compartments shift and Th17/Treg imbalance in acute ischemic stroke via mitochondrial transfer.","authors":"Shuna Chen, Chao Han, Zihan Shi, Xin Guan, Liyuan Cheng, Liang Wang, Wei Zou, Jing Liu","doi":"10.1186/s13287-025-04224-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute ischemic stroke (AIS) initiates secondary injuries that worsen neurological damage and hinder recovery. While peripheral immune responses play a key role in stroke outcomes, clinical results from immunotherapy have been suboptimal, with limited focus on T-cell dynamics. Umbilical mesenchymal stem cells (UMSCs) offer therapeutic potential due to their immunomodulatory properties. They can regulate immune responses and reduce neuroinflammation, potentially enhancing recovery by fostering a pro-regenerative peripheral immune environment. However, the effect of UMSCs on T-cell dynamics in AIS remains underexplored. This study investigates T-cell dynamics following AIS and examines how UMSCs may mitigate immune dysregulation to develop better treatment strategies.</p><p><strong>Methods: </strong>AIS patients (NIHSS scores 0-15) were recruited within 72 h of stroke onset, with peripheral blood samples collected on Day 0 (enrollment) and Day 7. T-cell compartments were identified by flow cytometry, and plasma cytokine levels were quantified using a cytometric bead array (CBA). Mitochondria in UMSCs were labeled with MitoTracker. Peripheral blood mononuclear cells from patients were isolated, treated with lipopolysaccharide (LPS), and cocultured with UMSCs in both direct contact and Transwell systems. Flow cytometry, CBA, RT-qPCR, and immunofluorescence assays were used to detect T-cell compartments, gene expression markers for helper T (Th) cell differentiation, cytokine profiles, mitochondrial transfer, reactive oxygen species (ROS) production, and mitochondrial membrane potential. Additionally, mitochondrial DNA in UMSCs was depleted. The effects of UMSCs and mitochondria-depleted UMSCs on ischemic stroke mice were compared through behavioral assessments and analysis of the peripheral immune microenvironment.</p><p><strong>Results: </strong>In AIS, T-cell compartments underwent a phenotypic shift from naïve to effector or memory states, with a specific increase in Th17 cells and a decrease in regulatory T cells, leading to alterations in T-cell-mediated immune functions. In an ex vivo co-culture system, LPS stimulation further amplified these disparities, inducing mitochondrial dysfunction and oxidative stress in T cells. Notably, UMSCs restored mitochondrial function and reversed the shift in T-cell compartments through mitochondrial transfer. Critically, UMSC treatment significantly improved both neurological deficits and peripheral immune disorders in ischemic stroke mice, whereas mitochondria-depleted UMSCs failed to produce this effect.</p><p><strong>Conclusions: </strong>Our comprehensive insights into the key attributes of T-cell compartments in acute ischemic stroke and the immune regulatory mechanisms of UMSCs provide a crucial theoretical foundation for understanding peripheral immune disorders in ischemic stroke and the therapeutic potential of UMSC treatment.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"134"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04224-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acute ischemic stroke (AIS) initiates secondary injuries that worsen neurological damage and hinder recovery. While peripheral immune responses play a key role in stroke outcomes, clinical results from immunotherapy have been suboptimal, with limited focus on T-cell dynamics. Umbilical mesenchymal stem cells (UMSCs) offer therapeutic potential due to their immunomodulatory properties. They can regulate immune responses and reduce neuroinflammation, potentially enhancing recovery by fostering a pro-regenerative peripheral immune environment. However, the effect of UMSCs on T-cell dynamics in AIS remains underexplored. This study investigates T-cell dynamics following AIS and examines how UMSCs may mitigate immune dysregulation to develop better treatment strategies.
Methods: AIS patients (NIHSS scores 0-15) were recruited within 72 h of stroke onset, with peripheral blood samples collected on Day 0 (enrollment) and Day 7. T-cell compartments were identified by flow cytometry, and plasma cytokine levels were quantified using a cytometric bead array (CBA). Mitochondria in UMSCs were labeled with MitoTracker. Peripheral blood mononuclear cells from patients were isolated, treated with lipopolysaccharide (LPS), and cocultured with UMSCs in both direct contact and Transwell systems. Flow cytometry, CBA, RT-qPCR, and immunofluorescence assays were used to detect T-cell compartments, gene expression markers for helper T (Th) cell differentiation, cytokine profiles, mitochondrial transfer, reactive oxygen species (ROS) production, and mitochondrial membrane potential. Additionally, mitochondrial DNA in UMSCs was depleted. The effects of UMSCs and mitochondria-depleted UMSCs on ischemic stroke mice were compared through behavioral assessments and analysis of the peripheral immune microenvironment.
Results: In AIS, T-cell compartments underwent a phenotypic shift from naïve to effector or memory states, with a specific increase in Th17 cells and a decrease in regulatory T cells, leading to alterations in T-cell-mediated immune functions. In an ex vivo co-culture system, LPS stimulation further amplified these disparities, inducing mitochondrial dysfunction and oxidative stress in T cells. Notably, UMSCs restored mitochondrial function and reversed the shift in T-cell compartments through mitochondrial transfer. Critically, UMSC treatment significantly improved both neurological deficits and peripheral immune disorders in ischemic stroke mice, whereas mitochondria-depleted UMSCs failed to produce this effect.
Conclusions: Our comprehensive insights into the key attributes of T-cell compartments in acute ischemic stroke and the immune regulatory mechanisms of UMSCs provide a crucial theoretical foundation for understanding peripheral immune disorders in ischemic stroke and the therapeutic potential of UMSC treatment.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.