Exploring non-Maxwellian distributions effects on modulational instability and rogue wave triplets in ion-acoustic plasmas

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-03-14 DOI:10.1016/j.chaos.2025.116262
Abdullah Khan , Aamir Farooq , A.A. Abid , Malik Sadam Hussain , Wen-Xiu Ma , Shaaban M. Shaaban
{"title":"Exploring non-Maxwellian distributions effects on modulational instability and rogue wave triplets in ion-acoustic plasmas","authors":"Abdullah Khan ,&nbsp;Aamir Farooq ,&nbsp;A.A. Abid ,&nbsp;Malik Sadam Hussain ,&nbsp;Wen-Xiu Ma ,&nbsp;Shaaban M. Shaaban","doi":"10.1016/j.chaos.2025.116262","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the implications of non-Maxwellian electron distributions on modulational instability and the formation of ion-acoustic rogue wave triplets in unmagnetized collisionless plasma. We employ the reductive perturbation technique to derive the nonlinear Schrödinger equation from a fluid model that incorporates these non-Maxwellian electron distributions. This framework enables a comprehensive analysis of the modulational instability of ion-acoustic waves, characterized by the ratio of dispersion and nonlinear coefficients within the nonlinear Schrödinger equation. The injection of nonthermal electrons and spectral indices via <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-nonextensive nonthermal and generalized <span><math><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span> distribution functions significantly influences the onset of modulational instability and its corresponding growth rate, providing critical insights into the dynamic behavior of the plasma system. These distribution functions facilitate the identification of dark and bright solitons in stable and unstable regions, respectively. Furthermore, we incorporate multiple physical free parameters that affect the formation of rogue wave triplets. Remarkably, our findings reveal that these parameters in the second-order rogue wave solution lead to three distinct peaks arranged in a triangular pattern accompanied by a novel rotation of these peaks. We have thoroughly investigated the existence regions of both dark and bright envelope solitons, which correspond to the modulationally unstable and stable regimes of ion-acoustic waves, respectively. Our study explores into the criteria that govern the formation of these solitons, elucidating their unique features in the context of the stability dynamics of the plasma’s wave system. This systematic analysis enhances our understanding of the properties of ion-acoustic solitary waves that may arise in non-Maxwellian space plasmas, paving the way for future research in this area.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"195 ","pages":"Article 116262"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002759","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the implications of non-Maxwellian electron distributions on modulational instability and the formation of ion-acoustic rogue wave triplets in unmagnetized collisionless plasma. We employ the reductive perturbation technique to derive the nonlinear Schrödinger equation from a fluid model that incorporates these non-Maxwellian electron distributions. This framework enables a comprehensive analysis of the modulational instability of ion-acoustic waves, characterized by the ratio of dispersion and nonlinear coefficients within the nonlinear Schrödinger equation. The injection of nonthermal electrons and spectral indices via qn-nonextensive nonthermal and generalized (r,q) distribution functions significantly influences the onset of modulational instability and its corresponding growth rate, providing critical insights into the dynamic behavior of the plasma system. These distribution functions facilitate the identification of dark and bright solitons in stable and unstable regions, respectively. Furthermore, we incorporate multiple physical free parameters that affect the formation of rogue wave triplets. Remarkably, our findings reveal that these parameters in the second-order rogue wave solution lead to three distinct peaks arranged in a triangular pattern accompanied by a novel rotation of these peaks. We have thoroughly investigated the existence regions of both dark and bright envelope solitons, which correspond to the modulationally unstable and stable regimes of ion-acoustic waves, respectively. Our study explores into the criteria that govern the formation of these solitons, elucidating their unique features in the context of the stability dynamics of the plasma’s wave system. This systematic analysis enhances our understanding of the properties of ion-acoustic solitary waves that may arise in non-Maxwellian space plasmas, paving the way for future research in this area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Second-order locally active memristor based neuronal circuit A study of bidirectional control of Parkinson’s beta oscillations by basal ganglia Exploring non-Maxwellian distributions effects on modulational instability and rogue wave triplets in ion-acoustic plasmas Quantum metrological performance of WW¯-like state in Ising model Correction note to: Yoshioka, H. (2025). Superposition of interacting stochastic processes with memory and its application to migrating fish counts. Chaos, Solitons & Fractals. Vol. 192, 115911
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1