Multi‐omics analysis of the regulatory network in winter buds of ‘Cabernet Sauvignon’ grapevine from dormancy to bud break

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2025-03-14 DOI:10.1111/pbi.70014
Li Chen, Keqin Chen, Jiapeng Jiang, Dan Wang, Kekun Zhang, Yulin Fang
{"title":"Multi‐omics analysis of the regulatory network in winter buds of ‘Cabernet Sauvignon’ grapevine from dormancy to bud break","authors":"Li Chen, Keqin Chen, Jiapeng Jiang, Dan Wang, Kekun Zhang, Yulin Fang","doi":"10.1111/pbi.70014","DOIUrl":null,"url":null,"abstract":"SummaryWinter dormancy and bud break are crucial to the viability, adaptability and yield of fruit trees, but not all metabolic activities or regulatory factors involved in maintaining and breaking dormancy are known. Here, winter buds, spanning from natural dormancy to bud break, were collected from ‘Cabernet Sauvignon’ grapevines maintained outdoors or forced indoors. The transcriptomes, proteomes and plant hormone contents were analysed across several bud stages. The winter buds presented three main stages, dormancy, dormancy release and bud development, whether grown in or outdoors. Weighted Correlation Network Analysis (<jats:styled-content style=\"fixed-case\">WGCNA</jats:styled-content>) and Gene Ontology (<jats:styled-content style=\"fixed-case\">GO</jats:styled-content>) analysis of the omics data revealed that the different stages were enriched for different biological processes. Analysis of the differentially expressed genes (<jats:styled-content style=\"fixed-case\">DEGs</jats:styled-content>) identified seven candidate genes that may affect grape dormancy and bud break. Transient transformation of these seven genes showed that <jats:styled-content style=\"fixed-case\"><jats:italic>VvDOGL4</jats:italic></jats:styled-content>, <jats:styled-content style=\"fixed-case\"><jats:italic>VvAGL65</jats:italic></jats:styled-content> and <jats:styled-content style=\"fixed-case\"><jats:italic>VvMARD</jats:italic></jats:styled-content> could promote maintenance of winter bud dormancy in grapevine. Subcellular localization showed that these three proteins all located to the nucleus, and yeast two‐hybrid screening showed that they may interact with proteins related to plant hormone signal transduction, respiration, energy metabolism and transcription regulation to affect winter bud break in grapevine. Overall, these findings contribute to a better understanding of the regulatory dynamics of bud dormancy in a perennial fruit crop and lay a foundation for exploring key genes and regulatory mechanisms that can be manipulated to improve fruit quality and yields as the global climate shifts growing regions.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"39 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryWinter dormancy and bud break are crucial to the viability, adaptability and yield of fruit trees, but not all metabolic activities or regulatory factors involved in maintaining and breaking dormancy are known. Here, winter buds, spanning from natural dormancy to bud break, were collected from ‘Cabernet Sauvignon’ grapevines maintained outdoors or forced indoors. The transcriptomes, proteomes and plant hormone contents were analysed across several bud stages. The winter buds presented three main stages, dormancy, dormancy release and bud development, whether grown in or outdoors. Weighted Correlation Network Analysis (WGCNA) and Gene Ontology (GO) analysis of the omics data revealed that the different stages were enriched for different biological processes. Analysis of the differentially expressed genes (DEGs) identified seven candidate genes that may affect grape dormancy and bud break. Transient transformation of these seven genes showed that VvDOGL4, VvAGL65 and VvMARD could promote maintenance of winter bud dormancy in grapevine. Subcellular localization showed that these three proteins all located to the nucleus, and yeast two‐hybrid screening showed that they may interact with proteins related to plant hormone signal transduction, respiration, energy metabolism and transcription regulation to affect winter bud break in grapevine. Overall, these findings contribute to a better understanding of the regulatory dynamics of bud dormancy in a perennial fruit crop and lay a foundation for exploring key genes and regulatory mechanisms that can be manipulated to improve fruit quality and yields as the global climate shifts growing regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Engineering Rubisco condensation in chloroplasts to manipulate plant photosynthesis Integration of single‐nuclei transcriptome and bulk RNA‐seq to unravel the role of AhWRKY70 in regulating stem cell development in Arachis hypogaea L. MsbZIP55 regulates salinity tolerance by modulating melatonin biosynthesis in alfalfa Multi‐omics analysis of the regulatory network in winter buds of ‘Cabernet Sauvignon’ grapevine from dormancy to bud break RPT: An integrated root phenotyping toolbox for segmenting and quantifying root system architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1