{"title":"Gadget Construction and Structural Convergence","authors":"David Hartman, Tomáš Hons, Jaroslav Nešetřil","doi":"10.1007/s00493-025-00140-8","DOIUrl":null,"url":null,"abstract":"<p>Nešetřil and Ossona de Mendez recently proposed a new definition of graph convergence called structural convergence. The structural convergence framework is based on the probability of satisfaction of logical formulas from a fixed fragment of first-order formulas. The flexibility of choosing the fragment allows to unify the classical notions of convergence for sparse and dense graphs. Since the field is relatively young, the range of examples of convergent sequences is limited and only a few methods of construction are known. Our aim is to extend the variety of constructions by considering the gadget construction. We show that, when restricting to the set of sentences, the application of gadget construction on elementarily convergent sequences yields an elementarily convergent sequence. On the other hand, we show counterexamples witnessing that a generalization to the full first-order convergence is not possible without additional assumptions. We give several different sufficient conditions to ensure the full convergence. One of them states that the resulting sequence is first-order convergent if the replaced edges are dense in the original sequence of structures.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"56 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00140-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nešetřil and Ossona de Mendez recently proposed a new definition of graph convergence called structural convergence. The structural convergence framework is based on the probability of satisfaction of logical formulas from a fixed fragment of first-order formulas. The flexibility of choosing the fragment allows to unify the classical notions of convergence for sparse and dense graphs. Since the field is relatively young, the range of examples of convergent sequences is limited and only a few methods of construction are known. Our aim is to extend the variety of constructions by considering the gadget construction. We show that, when restricting to the set of sentences, the application of gadget construction on elementarily convergent sequences yields an elementarily convergent sequence. On the other hand, we show counterexamples witnessing that a generalization to the full first-order convergence is not possible without additional assumptions. We give several different sufficient conditions to ensure the full convergence. One of them states that the resulting sequence is first-order convergent if the replaced edges are dense in the original sequence of structures.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.