High Capacity and Dynamic Accessibility in Associative Memory Networks with Context-Dependent Neuronal and Synaptic Gating

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2025-03-13 DOI:10.1103/physrevx.15.011057
William F. Podlaski, Everton J. Agnes, Tim P. Vogels
{"title":"High Capacity and Dynamic Accessibility in Associative Memory Networks with Context-Dependent Neuronal and Synaptic Gating","authors":"William F. Podlaski, Everton J. Agnes, Tim P. Vogels","doi":"10.1103/physrevx.15.011057","DOIUrl":null,"url":null,"abstract":"Biological memory is known to be flexible—memory formation and recall depend on factors such as the behavioral context of the organism. However, this property is often ignored in associative memory models, leaving it unclear how memories can be organized and recalled when subject to contextual control. Because of the lack of a rigorous analytical framework, it is also unknown how contextual control affects memory stability, storage capacity, and information content. Here, we bring the dynamic nature of memory to the fore by introducing a novel model of associative memory, which we refer to as the context-modular memory network. In our model, stored memory patterns are associated to one of several background network states, or contexts. Memories are accessible when their corresponding context is active, and are otherwise inaccessible. Context modulates the effective network connectivity by imposing a specific configuration of neuronal and synaptic gating—gated neurons (synapses) have their activity (weights) momentarily silenced, thereby reducing interference from memories belonging to other contexts. Memory patterns are randomly and independently chosen, while neuronal and synaptic gates may be selected randomly or optimized through a process of contextual synaptic refinement. Through analytic and numerical results, we show that context-modular memory networks can exhibit both improved memory capacity and differential control of memory stability with random gating (especially for neuronal gating). For contextual synaptic refinement, we devise a method in which synapses are gated off for a given context if they destabilize the memory patterns in that context, drastically improving memory capacity and enabling even more precise control over memory stability. Notably, synaptic refinement allows for patterns to be accessible in multiple contexts, stabilizing memory patterns even for weight matrices that alone do not contain any information about the memory patterns, such as Gaussian random matrices. Overall, our model integrates recent ideas about context-dependent memory organization with classic associative memory models and proposes a rigorous theory which can act as a framework for future work. Furthermore, our work carries important implications for the understanding of biological memory storage and recall in the brain, such as highlighting an intriguing trade-off between memory capacity and accessibility. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"18 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011057","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biological memory is known to be flexible—memory formation and recall depend on factors such as the behavioral context of the organism. However, this property is often ignored in associative memory models, leaving it unclear how memories can be organized and recalled when subject to contextual control. Because of the lack of a rigorous analytical framework, it is also unknown how contextual control affects memory stability, storage capacity, and information content. Here, we bring the dynamic nature of memory to the fore by introducing a novel model of associative memory, which we refer to as the context-modular memory network. In our model, stored memory patterns are associated to one of several background network states, or contexts. Memories are accessible when their corresponding context is active, and are otherwise inaccessible. Context modulates the effective network connectivity by imposing a specific configuration of neuronal and synaptic gating—gated neurons (synapses) have their activity (weights) momentarily silenced, thereby reducing interference from memories belonging to other contexts. Memory patterns are randomly and independently chosen, while neuronal and synaptic gates may be selected randomly or optimized through a process of contextual synaptic refinement. Through analytic and numerical results, we show that context-modular memory networks can exhibit both improved memory capacity and differential control of memory stability with random gating (especially for neuronal gating). For contextual synaptic refinement, we devise a method in which synapses are gated off for a given context if they destabilize the memory patterns in that context, drastically improving memory capacity and enabling even more precise control over memory stability. Notably, synaptic refinement allows for patterns to be accessible in multiple contexts, stabilizing memory patterns even for weight matrices that alone do not contain any information about the memory patterns, such as Gaussian random matrices. Overall, our model integrates recent ideas about context-dependent memory organization with classic associative memory models and proposes a rigorous theory which can act as a framework for future work. Furthermore, our work carries important implications for the understanding of biological memory storage and recall in the brain, such as highlighting an intriguing trade-off between memory capacity and accessibility. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
High Capacity and Dynamic Accessibility in Associative Memory Networks with Context-Dependent Neuronal and Synaptic Gating Noninvertible Symmetry-Protected Topological Order in a Group-Based Cluster State Experimental Realization of Discrete Time Quasicrystals Entanglement Witness for Indistinguishable Electrons Using Solid-State Spectroscopy Topological Hall Effect of Skyrmions from first Principles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1