Constructing a 3D Interconnected Carbon Network for Mg-Doped Porous LiMn0.85Fe0.15PO4/C Cathode Materials

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-03-14 DOI:10.1021/acsami.4c21578
Yao Niu, Shan Wang, Rui Chang, Pu Yang, Haiyang Xing, Youlong Xu
{"title":"Constructing a 3D Interconnected Carbon Network for Mg-Doped Porous LiMn0.85Fe0.15PO4/C Cathode Materials","authors":"Yao Niu, Shan Wang, Rui Chang, Pu Yang, Haiyang Xing, Youlong Xu","doi":"10.1021/acsami.4c21578","DOIUrl":null,"url":null,"abstract":"Economical and high-safety LiMn<sub>0.85</sub>Fe<sub>0.15</sub>PO<sub>4</sub>/C cathode materials have gained significant attention recently due to their theoretical specific energy advantage of 18% compared to LiFePO<sub>4</sub>. However, their low electronic conductivity and sluggish diffusion kinetics limit the practical applications of LiMn<sub>0.85</sub>Fe<sub>0.15</sub>PO<sub>4</sub>/C. This paper presents a simple solid-state synthesis of porous LMFM<sub>0.01</sub>P-2C4P, which is doped with Mg and coated with composite carbon. Mg substitution for Mn shortens the transport path of lithium ions while increasing intrinsic conductivity and structural stability. Additionally, a 3D conductive network structure generated by the composite carbon source (citric acid and polyethylene glycol 400) improves the electronic conductivity and effectively minimizes the internal resistance of the battery. LMFM<sub>0.01</sub>P-2C4P consists of secondary particles aggregated from primary particles smaller than 100 nm, each of which is coated with a uniform carbon layer. The electronic conductivity and lithium-ion diffusion coefficient greatly exceed those of unmodified LMFP-4C, measuring 7.22 × 10<sup>–3</sup> S cm<sup>–1</sup> and ∼10<sup>–12</sup> cm<sup>2</sup> s<sup>–1</sup>, respectively. Electrochemical studies demonstrate that LMFM<sub>0.01</sub>P-2C4P delivers a superior specific capacity of 152.1 m Ah g<sup>–1</sup> and 124.9 m Ah g<sup>–1</sup> at 0.1C and 1C, respectively, along with a capacity retention of 80.8% after 500 cycles at 1C. However, the initial capacity of LMFP-4C is merely 104.1 mAh g<sup>–1</sup> at 1C, with a capacity retention of only 65.7% after 500 cycles. This work presents a useful way to enhance the conductivity of phosphate cathode materials for lithium/sodium-ion batteries.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"89 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21578","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Economical and high-safety LiMn0.85Fe0.15PO4/C cathode materials have gained significant attention recently due to their theoretical specific energy advantage of 18% compared to LiFePO4. However, their low electronic conductivity and sluggish diffusion kinetics limit the practical applications of LiMn0.85Fe0.15PO4/C. This paper presents a simple solid-state synthesis of porous LMFM0.01P-2C4P, which is doped with Mg and coated with composite carbon. Mg substitution for Mn shortens the transport path of lithium ions while increasing intrinsic conductivity and structural stability. Additionally, a 3D conductive network structure generated by the composite carbon source (citric acid and polyethylene glycol 400) improves the electronic conductivity and effectively minimizes the internal resistance of the battery. LMFM0.01P-2C4P consists of secondary particles aggregated from primary particles smaller than 100 nm, each of which is coated with a uniform carbon layer. The electronic conductivity and lithium-ion diffusion coefficient greatly exceed those of unmodified LMFP-4C, measuring 7.22 × 10–3 S cm–1 and ∼10–12 cm2 s–1, respectively. Electrochemical studies demonstrate that LMFM0.01P-2C4P delivers a superior specific capacity of 152.1 m Ah g–1 and 124.9 m Ah g–1 at 0.1C and 1C, respectively, along with a capacity retention of 80.8% after 500 cycles at 1C. However, the initial capacity of LMFP-4C is merely 104.1 mAh g–1 at 1C, with a capacity retention of only 65.7% after 500 cycles. This work presents a useful way to enhance the conductivity of phosphate cathode materials for lithium/sodium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Highly Efficient Screening of Halide Double Perovskite Optoelectronic Materials Based on Machine learning Gel-to-Coacervate Transition in Peptide/HA Complexes for MMP-9-Activated Penetration into Tumor Spheroids Breathable and Self-Healing Photothermal Superhydrophobic Coating Featuring Exceptional Liquid Impalement Resistance and Anti-/Deicing Capabilities for Concrete Materials Synthesizing Conductive Metal–Organic Framework Nanosheets for High-Performing Chemiresistive Sensors A Single H2S-Releasing Nanozyme for Comprehensive Diabetic Wound Healing through Multistep Intervention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1