Microenvironment-Responsive Biomimetic Bioprosthetic Valve with Antithrombosis and Immunoregulation Performance

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-03-14 DOI:10.1021/acsami.5c01314
Bangquan Wei, Lepeng Chen, Xueyu Huang, Fengyao Chi, Gaocan Li, Li Yang, Cheng Zheng, Yunbing Wang
{"title":"Microenvironment-Responsive Biomimetic Bioprosthetic Valve with Antithrombosis and Immunoregulation Performance","authors":"Bangquan Wei, Lepeng Chen, Xueyu Huang, Fengyao Chi, Gaocan Li, Li Yang, Cheng Zheng, Yunbing Wang","doi":"10.1021/acsami.5c01314","DOIUrl":null,"url":null,"abstract":"The prevalence of heart valve disease (HVD) has escalated worldwide, because of population aging. Currently, artificial heart valve replacement is considered the most effective treatment for HVD. The complexity and risk of heart valve replacement have been markedly reduced with the development of minimally invasive interventional techniques, which has resulted in the more widespread implantation of bioprosthetic heart valves (BHVs); however, they still present with defects including thrombosis, poor cytocompatibility, immune responses, and calcification, which reduces their service life. We developed a microenvironment-responsive zwitterionic glycocalyx-mimetic hydrogel-engineered BHV (Hes@HS-PP) with a profile of on-demand drug release. Inspired by the structure and function of the glycocalyx on the inner wall of blood vessels, a zwitterionic glycocalyx-mimetic hydrogel coating was covalently constructed on the BHV by photoinduced polymerization. This coating significantly resisted the fouling of blood components and thrombosis and improved the endothelialization potential and biocompatibility of BHVs by shielding the interactions between blood and the xenogeneic collagenous BHV matrix. Following the introduction of dynamic borate ester bonds into the hydrogel, the anti-inflammatory drug hesperidin (Hes) was loaded onto the BHVs. Excess reactive oxygen species were scavenged, and Hes was released into the inflammatory region on demand to achieve immune regulation and ameliorate inflammatory reactions on BHVs. Moreover, Hes@HS-PP exhibited a markedly lower degree of calcification in a rat subcutaneous implantation model. In summary, the construction of microenvironment-responsive zwitterionic glycocalyx-mimetic hydrogels on BHVs significantly enhanced their antithrombotic, anti-inflammatory, endothelialization, and anticalcification properties and mitigated the risk of structural valvular degradation, offering new perspectives for the functional modification of BHVs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01314","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence of heart valve disease (HVD) has escalated worldwide, because of population aging. Currently, artificial heart valve replacement is considered the most effective treatment for HVD. The complexity and risk of heart valve replacement have been markedly reduced with the development of minimally invasive interventional techniques, which has resulted in the more widespread implantation of bioprosthetic heart valves (BHVs); however, they still present with defects including thrombosis, poor cytocompatibility, immune responses, and calcification, which reduces their service life. We developed a microenvironment-responsive zwitterionic glycocalyx-mimetic hydrogel-engineered BHV (Hes@HS-PP) with a profile of on-demand drug release. Inspired by the structure and function of the glycocalyx on the inner wall of blood vessels, a zwitterionic glycocalyx-mimetic hydrogel coating was covalently constructed on the BHV by photoinduced polymerization. This coating significantly resisted the fouling of blood components and thrombosis and improved the endothelialization potential and biocompatibility of BHVs by shielding the interactions between blood and the xenogeneic collagenous BHV matrix. Following the introduction of dynamic borate ester bonds into the hydrogel, the anti-inflammatory drug hesperidin (Hes) was loaded onto the BHVs. Excess reactive oxygen species were scavenged, and Hes was released into the inflammatory region on demand to achieve immune regulation and ameliorate inflammatory reactions on BHVs. Moreover, Hes@HS-PP exhibited a markedly lower degree of calcification in a rat subcutaneous implantation model. In summary, the construction of microenvironment-responsive zwitterionic glycocalyx-mimetic hydrogels on BHVs significantly enhanced their antithrombotic, anti-inflammatory, endothelialization, and anticalcification properties and mitigated the risk of structural valvular degradation, offering new perspectives for the functional modification of BHVs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Highly Efficient Screening of Halide Double Perovskite Optoelectronic Materials Based on Machine learning Gel-to-Coacervate Transition in Peptide/HA Complexes for MMP-9-Activated Penetration into Tumor Spheroids Breathable and Self-Healing Photothermal Superhydrophobic Coating Featuring Exceptional Liquid Impalement Resistance and Anti-/Deicing Capabilities for Concrete Materials Synthesizing Conductive Metal–Organic Framework Nanosheets for High-Performing Chemiresistive Sensors A Single H2S-Releasing Nanozyme for Comprehensive Diabetic Wound Healing through Multistep Intervention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1