Multilayer Co-casting method for enhanced performance anode-supported reversible solid oxide cells: Fabrication and effect of anode functional layer thickness on electrochemical performance

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2025-03-14 DOI:10.1016/j.jpowsour.2025.236775
Saron Park , Muhammad Pramaditya Garry Hanantyo , Junghyun Park , Hajin Lee , Jun-Young Park , Sun-Ju Song
{"title":"Multilayer Co-casting method for enhanced performance anode-supported reversible solid oxide cells: Fabrication and effect of anode functional layer thickness on electrochemical performance","authors":"Saron Park ,&nbsp;Muhammad Pramaditya Garry Hanantyo ,&nbsp;Junghyun Park ,&nbsp;Hajin Lee ,&nbsp;Jun-Young Park ,&nbsp;Sun-Ju Song","doi":"10.1016/j.jpowsour.2025.236775","DOIUrl":null,"url":null,"abstract":"<div><div>Reversible solid oxide cells (RSOCs) represent an innovative and sustainable energy solution by integrating the functionalities of solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs). This dual capability allows RSOCs to efficiently convert various fuel sources into electricity and store energy via chemical production. Despite their potential, the relatively high manufacturing costs of RSOCs pose a significant barrier to widespread commercialization. This study presents an optimized multilayer co-casting method for fabricating RSOCs, offering a simplified and potentially more cost-effective manufacturing approach. Optimization involved adjusting slurry parameters via the fabrication and microstructural comparison of multiple half-cells. This optimized co-casting method yielded a thin YSZ electrolyte layer (∼3 μm), significantly thinner than the conventional thickness achieved via conventional tape-casting processes. Performance evaluations of anode-supported RSOCs demonstrated substantial improvements, with peak power density (PPD) enhancements of up to 24 % in fuel cell mode—rising from 2.03 W cm<sup>−2</sup> at 800 °C for conventionally coated cells to 2.52 W cm<sup>−2</sup> for co-casted cells. In electrolysis cell mode, current density improved nearly threefold, increasing from 0.81 A cm<sup>−2</sup> at 1.3 V for conventionally coated cells to 2.48 A cm<sup>−2</sup> for co-casted cells. Furthermore, investigations into the impact of functional layer thickness revealed that cells with a 17-μm anode functional layer achieved the highest PPD of 2.9 W cm<sup>−2</sup> at 800 °C in fuel cell mode. In comparison, those with an 11-μm layer excelled in the electrolysis mode, reaching a current density of 2.48 A cm<sup>−2</sup> at 1.3 V.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"640 ","pages":"Article 236775"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325006111","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reversible solid oxide cells (RSOCs) represent an innovative and sustainable energy solution by integrating the functionalities of solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs). This dual capability allows RSOCs to efficiently convert various fuel sources into electricity and store energy via chemical production. Despite their potential, the relatively high manufacturing costs of RSOCs pose a significant barrier to widespread commercialization. This study presents an optimized multilayer co-casting method for fabricating RSOCs, offering a simplified and potentially more cost-effective manufacturing approach. Optimization involved adjusting slurry parameters via the fabrication and microstructural comparison of multiple half-cells. This optimized co-casting method yielded a thin YSZ electrolyte layer (∼3 μm), significantly thinner than the conventional thickness achieved via conventional tape-casting processes. Performance evaluations of anode-supported RSOCs demonstrated substantial improvements, with peak power density (PPD) enhancements of up to 24 % in fuel cell mode—rising from 2.03 W cm−2 at 800 °C for conventionally coated cells to 2.52 W cm−2 for co-casted cells. In electrolysis cell mode, current density improved nearly threefold, increasing from 0.81 A cm−2 at 1.3 V for conventionally coated cells to 2.48 A cm−2 for co-casted cells. Furthermore, investigations into the impact of functional layer thickness revealed that cells with a 17-μm anode functional layer achieved the highest PPD of 2.9 W cm−2 at 800 °C in fuel cell mode. In comparison, those with an 11-μm layer excelled in the electrolysis mode, reaching a current density of 2.48 A cm−2 at 1.3 V.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可逆式固体氧化物电池(RSOC)集成了固体氧化物燃料电池(SOFC)和固体氧化物电解电池(SOEC)的功能,是一种创新的可持续能源解决方案。这种双重功能使 RSOC 能够有效地将各种燃料转化为电能,并通过化学生产储存能量。尽管 RSOC 潜力巨大,但其相对较高的制造成本是其广泛商业化的一大障碍。本研究提出了一种用于制造 RSOC 的优化多层共铸方法,提供了一种简化且可能更具成本效益的制造方法。优化包括通过多个半电池的制造和微观结构比较来调整浆料参数。这种优化的共铸方法产生了很薄的 YSZ 电解质层(∼3 μm),大大薄于传统的胶带铸造工艺。阳极支持的 RSOC 的性能评估表明其性能有了大幅提高,在燃料电池模式下,峰值功率密度(PPD)提高了 24%,从传统涂层电池在 800 °C 时的 2.03 W cm-2 提高到共铸电池的 2.52 W cm-2。在电解池模式下,电流密度提高了近三倍,从传统涂层电池在 1.3 V 时的 0.81 A cm-2 提高到共铸电池的 2.48 A cm-2。此外,对功能层厚度影响的研究表明,在燃料电池模式下,阳极功能层为 17μm 的电池在 800 °C 时的功率密度最高,达到 2.9 W cm-2。相比之下,那些具有 11 微米功能层的电池在电解模式下表现出色,在 1.3 V 电压下电流密度达到 2.48 A cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Janus waterproof/water-absorbent membrane for lithium-air batteries in humid environments Design of sulfur-containing additive composite electrolyte for enhancing the thermal stability and electrochemical performance of LiFePO4/Graphite lithium-ion batteries PVDF-HFP nanofiber quasi-solid electrolyte for fast charging and dendrites-free lithium batteries Pressure-dependent growth of RF-sputtered WS2 nanostructures for enhanced hydrogen production via photoelectrochemical water splitting Preformation of Zn based layered double hydroxides on Zn powder solvent-free electrode for low temperature soft-package Zn-MnO2 battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1