DSQN: Robust path planning of mobile robot based on deep spiking Q-network

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-03-11 DOI:10.1016/j.neucom.2025.129916
Aakash Kumar , Lei Zhang , Hazrat Bilal , Shifeng Wang , Ali Muhammad Shaikh , Lu Bo , Avinash Rohra , Alisha Khalid
{"title":"DSQN: Robust path planning of mobile robot based on deep spiking Q-network","authors":"Aakash Kumar ,&nbsp;Lei Zhang ,&nbsp;Hazrat Bilal ,&nbsp;Shifeng Wang ,&nbsp;Ali Muhammad Shaikh ,&nbsp;Lu Bo ,&nbsp;Avinash Rohra ,&nbsp;Alisha Khalid","doi":"10.1016/j.neucom.2025.129916","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement of science and technology, the field of mobile robot applications continues to expand, with path planning emerging as a fundamental yet challenging task. While traditional path planning techniques have developed into a relatively complete theoretical system, their performance in uncertain environments remains a critical area of research. To address this, we propose a novel Deep Spiking Q-Network (DSQN) algorithm that significantly enhances path planning performance by leveraging the unique advantages of spiking neural networks (SNNs). Unlike classic Q-learning and its contemporary variants, the DSQN algorithm integrates global and local information simultaneously, resulting in superior overall performance. As the third generation of neural networks, SNNs offer unparalleled robustness and energy efficiency by mimicking biological neural systems. By introducing spiking neurons into the conventional Deep Q-learning (DQN) framework, the DSQN algorithm overcomes key challenges in deep reinforcement learning (DRL), such as limited robustness and high energy consumption. The DSQN training process incorporates both surrogate gradient learning (SGL) and ANN-to-SNN conversion techniques, with SGL demonstrating remarkable effectiveness in mobile robot path planning tasks. Experimental results validate the practicality and efficiency of DSQN, showcasing improved performance across diverse test scenarios compared to the original DQN algorithm. These findings highlight the potential of DSQN to advance path planning in complex and uncertain environments, establishing it as a robust and energy-efficient solution for mobile robotics.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"634 ","pages":"Article 129916"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225005880","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of science and technology, the field of mobile robot applications continues to expand, with path planning emerging as a fundamental yet challenging task. While traditional path planning techniques have developed into a relatively complete theoretical system, their performance in uncertain environments remains a critical area of research. To address this, we propose a novel Deep Spiking Q-Network (DSQN) algorithm that significantly enhances path planning performance by leveraging the unique advantages of spiking neural networks (SNNs). Unlike classic Q-learning and its contemporary variants, the DSQN algorithm integrates global and local information simultaneously, resulting in superior overall performance. As the third generation of neural networks, SNNs offer unparalleled robustness and energy efficiency by mimicking biological neural systems. By introducing spiking neurons into the conventional Deep Q-learning (DQN) framework, the DSQN algorithm overcomes key challenges in deep reinforcement learning (DRL), such as limited robustness and high energy consumption. The DSQN training process incorporates both surrogate gradient learning (SGL) and ANN-to-SNN conversion techniques, with SGL demonstrating remarkable effectiveness in mobile robot path planning tasks. Experimental results validate the practicality and efficiency of DSQN, showcasing improved performance across diverse test scenarios compared to the original DQN algorithm. These findings highlight the potential of DSQN to advance path planning in complex and uncertain environments, establishing it as a robust and energy-efficient solution for mobile robotics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
A reformulation neurodynamic algorithm for distributed nonconvex optimization Student behavior detection model based on multilevel residual networks and hybrid attention mechanisms Pool-mamba: Pooling state space model for low-light image enhancement Label self-correction intelligent diagnosis method and embedded system for axle box bearings of high-speed trains with noisy labels Domain-wise knowledge decoupling for personalized federated learning via Radon transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1