RSRule: Relation-level semantic-driven rule learning for explainable extrapolation on temporal knowledge graphs

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2025-03-12 DOI:10.1016/j.inffus.2025.103080
Kai Chen , Xiaojuan Zhao , Xin Song , Ye Wang , Zhibin Dong , Feng Xie , Aiping Li , Yue Han , Changjian Li
{"title":"RSRule: Relation-level semantic-driven rule learning for explainable extrapolation on temporal knowledge graphs","authors":"Kai Chen ,&nbsp;Xiaojuan Zhao ,&nbsp;Xin Song ,&nbsp;Ye Wang ,&nbsp;Zhibin Dong ,&nbsp;Feng Xie ,&nbsp;Aiping Li ,&nbsp;Yue Han ,&nbsp;Changjian Li","doi":"10.1016/j.inffus.2025.103080","DOIUrl":null,"url":null,"abstract":"<div><div>Explainability is crucial and valuable for extrapolation reasoning on Temporal Knowledge Graphs (TKGs). By elucidating the reasoning process, we can understand and validate the extrapolation results well, ensuring their validity and reliability. Among various extrapolation methods, rule-based approaches have significant advantages for its explicit rules and explainable reasoning paths. However, current rule-based methods primarily rely on statistics in rule learning, with a heavy dependence on the quantity and quality of the data. In reality, TKGs often suffer from incompleteness and strong sparsity, which severely limits the performance of existing rule-based methods. To address these issues, we propose a novel relation-level semantic-driven rule-based (RSRule) method for explainable extrapolation reasoning, where the relation-level semantics are fused into our rule learning process. Specifically, we concentrate on diverse contextual positional patterns within TKGs and introduce an innovative heterogeneous relation graph to learn relation-level semantics, while employing a relative time encoding to capture the periodic and non-periodic aspects of temporal evolution. Our RSRule focuses on fusing semantic information into the rule learning process, enabling the calculation of rule scores that consider both statistical and semantic aspects. Extensive experiments demonstrate the promising capacity of our RSRule from five aspects, i.e., superiority, improvement, explainability, robustness and generalization.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"120 ","pages":"Article 103080"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525001538","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Explainability is crucial and valuable for extrapolation reasoning on Temporal Knowledge Graphs (TKGs). By elucidating the reasoning process, we can understand and validate the extrapolation results well, ensuring their validity and reliability. Among various extrapolation methods, rule-based approaches have significant advantages for its explicit rules and explainable reasoning paths. However, current rule-based methods primarily rely on statistics in rule learning, with a heavy dependence on the quantity and quality of the data. In reality, TKGs often suffer from incompleteness and strong sparsity, which severely limits the performance of existing rule-based methods. To address these issues, we propose a novel relation-level semantic-driven rule-based (RSRule) method for explainable extrapolation reasoning, where the relation-level semantics are fused into our rule learning process. Specifically, we concentrate on diverse contextual positional patterns within TKGs and introduce an innovative heterogeneous relation graph to learn relation-level semantics, while employing a relative time encoding to capture the periodic and non-periodic aspects of temporal evolution. Our RSRule focuses on fusing semantic information into the rule learning process, enabling the calculation of rule scores that consider both statistical and semantic aspects. Extensive experiments demonstrate the promising capacity of our RSRule from five aspects, i.e., superiority, improvement, explainability, robustness and generalization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Listening and seeing again: Generative error correction for audio-visual speech recognition Hierarchical multi-source cues fusion for mono-to-binaural based Audio Deepfake Detection Second FRCSyn-onGoing: Winning solutions and post-challenge analysis to improve face recognition with synthetic data Span-based syntactic feature fusion for aspect sentiment triplet extraction From failure to fusion: A survey on learning from bad machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1