LPI radar sequence design against cyclostationary analysis

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2025-03-01 DOI:10.1016/j.dt.2024.08.020
Qiang Liu, Fucheng Guo, Kunlai Xiong, Xi Li, Guizhou Wu, Weidong Hu
{"title":"LPI radar sequence design against cyclostationary analysis","authors":"Qiang Liu,&nbsp;Fucheng Guo,&nbsp;Kunlai Xiong,&nbsp;Xi Li,&nbsp;Guizhou Wu,&nbsp;Weidong Hu","doi":"10.1016/j.dt.2024.08.020","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a novel unimodular sequence design algorithm based on the coordinate descent (CD) algorithm, aimed at countering electronic surveillance (ES) systems based on cyclostationary analysis. Our algorithm not only provides resistance against cyclostationary analysis (CSA) but also maintains low integrated sidelobe (ISL) characteristics. Initially, we derive the expression of the cyclostationary feature (CSF) detector and simplify it into an iterative quadratic form. Additionally, we derive a quadratic form to ensure the similarity of the autocorrelation sidelobes. To balance the minimization of the detection probability and the ISL values, we introduce a Pareto scalar that transforms the multi-objective optimization problem into a convex combination of objective functions. This approach allows us to find an optimal trade-off between the two objectives. Finally, we propose a monotonic algorithm based on the CD algorithm to counter CSA analysis. This algorithm efficiently solves the optimization problem mentioned earlier. Numerical experiments are conducted to validate the correctness and effectiveness of our proposed algorithm.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"45 ","pages":"Pages 227-237"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724002149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel unimodular sequence design algorithm based on the coordinate descent (CD) algorithm, aimed at countering electronic surveillance (ES) systems based on cyclostationary analysis. Our algorithm not only provides resistance against cyclostationary analysis (CSA) but also maintains low integrated sidelobe (ISL) characteristics. Initially, we derive the expression of the cyclostationary feature (CSF) detector and simplify it into an iterative quadratic form. Additionally, we derive a quadratic form to ensure the similarity of the autocorrelation sidelobes. To balance the minimization of the detection probability and the ISL values, we introduce a Pareto scalar that transforms the multi-objective optimization problem into a convex combination of objective functions. This approach allows us to find an optimal trade-off between the two objectives. Finally, we propose a monotonic algorithm based on the CD algorithm to counter CSA analysis. This algorithm efficiently solves the optimization problem mentioned earlier. Numerical experiments are conducted to validate the correctness and effectiveness of our proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board Resilient multi-objective mission planning for UAV formation: A unified framework integrating task pre- and re-assignment Research status of high efficiency deep penetration welding of medium-thick plate titanium alloy: A review LPI radar sequence design against cyclostationary analysis Iterated rational quadratic kernel - High-order unscented Kalman filtering algorithm for spacecraft tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1