An interpretable machine learning model for optimization of prediction index gases in coal spontaneous combustion

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY alexandria engineering journal Pub Date : 2025-03-14 DOI:10.1016/j.aej.2025.02.104
Jiuling Zhang , Xu Zhou , Jinpeng Su , Yilong Xiao
{"title":"An interpretable machine learning model for optimization of prediction index gases in coal spontaneous combustion","authors":"Jiuling Zhang ,&nbsp;Xu Zhou ,&nbsp;Jinpeng Su ,&nbsp;Yilong Xiao","doi":"10.1016/j.aej.2025.02.104","DOIUrl":null,"url":null,"abstract":"<div><div>Early warnings of coal spontaneous combustion (CSC) have become urgent problems for coal enterprises. Existing approaches are designed to enhance the accuracy of CSC prediction. Improving the interpretability of the model is another important issue besides improving the prediction accuracy. Therefore, an interpretable machine learning framework based on RF (Random Forest) and SHAP (SHapley Additive exPlanations) is proposed to optimize prediction index gases. The data obtained from temperature-programmed experiments using coal samples from #5, #7, #8, #9, and #12 coal seams in Fangezhuang Mine are implemented to verify the proposed framework. <em>CO</em>, <em>O</em><sub><em>2</em></sub><em>/CO</em>, <em>CO/CO</em><sub><em>2</em></sub>, <em>CO/O</em><sub><em>2</em></sub>, <span><math><mrow><mi>C</mi><mi>O</mi><mo>/</mo><mi>Δ</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>Δ</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>Δ</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><mi>Δ</mi><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>/</mo><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, <em>C</em><sub><em>2</em></sub><em>H</em><sub><em>4</em></sub>, <em>CO</em><sub><em>2</em></sub><em>/O</em><sub><em>2</em></sub> are selected, which is explained the rationality of the selected indicators using SHAP, practical experience, and related theories. Comparison of results using different machine learning models and different parameter optimization approaches showed the accuracy of the model affects the interpretation of the results. Finally, through the ablation experiment, the R² of RF, XGBoost, and Linear Regression model before feature removal was 0.98, 0.95 and 0.9, the model accuracy decreased significantly after the deletion, which showed the optimal prediction performance of RF, and the importance and validity of the selected indicators were verified using SHAP interpretation.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"122 ","pages":"Pages 268-278"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825002819","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Early warnings of coal spontaneous combustion (CSC) have become urgent problems for coal enterprises. Existing approaches are designed to enhance the accuracy of CSC prediction. Improving the interpretability of the model is another important issue besides improving the prediction accuracy. Therefore, an interpretable machine learning framework based on RF (Random Forest) and SHAP (SHapley Additive exPlanations) is proposed to optimize prediction index gases. The data obtained from temperature-programmed experiments using coal samples from #5, #7, #8, #9, and #12 coal seams in Fangezhuang Mine are implemented to verify the proposed framework. CO, O2/CO, CO/CO2, CO/O2, CO/ΔO2, ΔO2, ΔO2/ΔCO2, C2H6/CO2, C2H4, CO2/O2 are selected, which is explained the rationality of the selected indicators using SHAP, practical experience, and related theories. Comparison of results using different machine learning models and different parameter optimization approaches showed the accuracy of the model affects the interpretation of the results. Finally, through the ablation experiment, the R² of RF, XGBoost, and Linear Regression model before feature removal was 0.98, 0.95 and 0.9, the model accuracy decreased significantly after the deletion, which showed the optimal prediction performance of RF, and the importance and validity of the selected indicators were verified using SHAP interpretation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于优化煤炭自燃预测指标气体的可解释机器学习模型
煤炭自燃预警已成为煤炭企业亟待解决的问题。现有的方法旨在提高CSC预测的准确性。除了提高预测精度外,提高模型的可解释性是另一个重要问题。因此,本文提出了一种基于RF (Random Forest)和SHAP (SHapley Additive exPlanations)的可解释机器学习框架来优化预测指标气体。利用方家庄矿5、7、8、9、12煤层煤样的程序升温实验数据,对提出的框架进行了验证。选取了CO、O2/CO、CO/CO2、CO/O2、CO/ΔO2、ΔO2、ΔO2/ΔCO2、C2H6/CO2、C2H4、CO2/O2等指标,运用SHAP理论、实践经验和相关理论说明了所选指标的合理性。使用不同机器学习模型和不同参数优化方法的结果比较表明,模型的准确性影响结果的解释。最后,通过消融实验,剔除特征前RF、XGBoost和Linear Regression模型的R²分别为0.98、0.95和0.9,剔除特征后模型精度显著下降,表明RF具有最佳的预测性能,并通过SHAP解释验证所选指标的重要性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
期刊最新文献
Editorial Board Data-driven sustainable supply chain management with MEREC-EDAS approach using bipolar fuzzy credibility numbers EmoMamba: Real-time emotional state recognition and adaptive feedback generation in auditory learning environments Numerical techniques for two-parameter elastic foundation using integro-partial differential equations A multiscale physics-informed framework for robust no-reference underwater image quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1