Advancing conductivity modeling: A unified framework for polymer carbon black nanocomposites

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research and Technology-Jmr&t Pub Date : 2025-03-12 DOI:10.1016/j.jmrt.2025.03.104
Yasser Zare , Muhammad Naqvi , Kyong Yop Rhee , Soo-Jin Park
{"title":"Advancing conductivity modeling: A unified framework for polymer carbon black nanocomposites","authors":"Yasser Zare ,&nbsp;Muhammad Naqvi ,&nbsp;Kyong Yop Rhee ,&nbsp;Soo-Jin Park","doi":"10.1016/j.jmrt.2025.03.104","DOIUrl":null,"url":null,"abstract":"<div><div>Although numerous experimental data on the conductivity of polymer carbon black (CB) nanocomposites (PCBs) have been reported, the modeling approaches remain incomplete and require further attention. This article proposes a simplified model for predicting the PCB electrical conductivity, incorporating key parameters such as CB radius (<em>R</em>), tunneling distance (<em>λ</em>), contact diameter (<em>d</em>), interphase depth, network percentage, and interfacial tension between CB and polymer. Experimental PCB conductivity data and parametric evaluations are utilized to validate the proposed model. The proposed model predicts that the thinnest and widest tunnels (<em>λ</em> = 2 nm and <em>d</em> = 30 nm) attain a maximum conductivity of 5.5 S/m. However, tunnels bigger than 4 nm cannot enhance the conductivity. Additionally, increasing the concentration of the smallest CBs (<em>R</em> = 10 nm) to 10 vol% boosts PCB conductivity to 4.9 S/m, whereas low concentrations (&lt;5 vol%) of larger CBs (<em>R</em> &gt; 17 nm) have negligible effect. These findings underscore the critical roles of tunneling dimensions together with CB size and concentration in the conductivity of this system.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"36 ","pages":"Pages 26-33"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425006143","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although numerous experimental data on the conductivity of polymer carbon black (CB) nanocomposites (PCBs) have been reported, the modeling approaches remain incomplete and require further attention. This article proposes a simplified model for predicting the PCB electrical conductivity, incorporating key parameters such as CB radius (R), tunneling distance (λ), contact diameter (d), interphase depth, network percentage, and interfacial tension between CB and polymer. Experimental PCB conductivity data and parametric evaluations are utilized to validate the proposed model. The proposed model predicts that the thinnest and widest tunnels (λ = 2 nm and d = 30 nm) attain a maximum conductivity of 5.5 S/m. However, tunnels bigger than 4 nm cannot enhance the conductivity. Additionally, increasing the concentration of the smallest CBs (R = 10 nm) to 10 vol% boosts PCB conductivity to 4.9 S/m, whereas low concentrations (<5 vol%) of larger CBs (R > 17 nm) have negligible effect. These findings underscore the critical roles of tunneling dimensions together with CB size and concentration in the conductivity of this system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
期刊最新文献
Enhanced strength and fracture features of tailings-based concrete reinforced with fibers and X-shaped rocks Spinning solution viscosity reducing and wet spinning of carbon black-based elastic conductive fibers for sports monitoring and healthcare electrical heating Combining in-situ technology to study the influence of bainite morphology on the strength and toughness properties of medium-carbon bainitic steel Advancing conductivity modeling: A unified framework for polymer carbon black nanocomposites Corrigendum to ‘Acquiring a low yield ratio well synchronized with enhanced low-temperature toughness in 550MPa grade bridge steels through intercritical quenching treatment’ [J Mater Res Technol 35 (2025) 6198–6210 13202]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1