Effects and mechanisms of argon flow rate on the quality of cast multicrystalline silicon

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-03-14 DOI:10.1016/j.solmat.2025.113572
Liang He , Yunfei Xu , Zuozuo Wu , Zhenchao Hong , Hongzhi Luo , Jianmin Li , Qi Lei , Xiaojuan Cheng , Fahui Wang , Shengquan Gan , Shuai Yuan
{"title":"Effects and mechanisms of argon flow rate on the quality of cast multicrystalline silicon","authors":"Liang He ,&nbsp;Yunfei Xu ,&nbsp;Zuozuo Wu ,&nbsp;Zhenchao Hong ,&nbsp;Hongzhi Luo ,&nbsp;Jianmin Li ,&nbsp;Qi Lei ,&nbsp;Xiaojuan Cheng ,&nbsp;Fahui Wang ,&nbsp;Shengquan Gan ,&nbsp;Shuai Yuan","doi":"10.1016/j.solmat.2025.113572","DOIUrl":null,"url":null,"abstract":"<div><div>Cast multicrystalline silicon is a well-established crystal growth technique, widely utilized not only as a direct material for photovoltaic cells but also as an effective method for purifying low-purity silicon feedstock. This study, based on a mature industrial process for small-grain cast multicrystalline silicon, examines the impact of varying argon flow rates on material quality. Increasing the argon flow rate enhances heat transfer, reducing crystal growth time, and strengthens melt convection, which mitigates residual stress. Consequently, this reduces the concentration of detrimental defects, extends carrier recombination lifetime, and improves purification efficiency. Furthermore, a higher argon flow rate effectively lowers interstitial oxygen content in the cast silicon. However, excessively high flow rates may compromise the crucible coating, introducing additional contaminants and inclusions into the crystal.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113572"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001734","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Cast multicrystalline silicon is a well-established crystal growth technique, widely utilized not only as a direct material for photovoltaic cells but also as an effective method for purifying low-purity silicon feedstock. This study, based on a mature industrial process for small-grain cast multicrystalline silicon, examines the impact of varying argon flow rates on material quality. Increasing the argon flow rate enhances heat transfer, reducing crystal growth time, and strengthens melt convection, which mitigates residual stress. Consequently, this reduces the concentration of detrimental defects, extends carrier recombination lifetime, and improves purification efficiency. Furthermore, a higher argon flow rate effectively lowers interstitial oxygen content in the cast silicon. However, excessively high flow rates may compromise the crucible coating, introducing additional contaminants and inclusions into the crystal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氩气流量对铸态多晶硅质量的影响及其机理
铸造多晶硅是一种成熟的晶体生长技术,不仅是光伏电池的直接材料,而且是净化低纯度硅原料的有效方法。本研究以成熟的小晶铸造多晶硅工业工艺为基础,考察了不同氩气流量对材料质量的影响。增加氩气流量可以增强传热,缩短晶体生长时间,增强熔体对流,从而减轻残余应力。因此,这降低了有害缺陷的浓度,延长了载流子重组寿命,提高了净化效率。此外,较高的氩气流量可有效降低铸硅中的间隙氧含量。然而,过高的流速可能损害坩埚涂层,将额外的污染物和夹杂物引入晶体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Comprehensive VIPV energy yield and MPPT evaluation under realistic dynamic shading in urban environments Directionally structured oxalic acid dihydrate-glutaric acid/expanded graphite-graphite sheet composites with ultrahigh thermal conductivity for solar thermal storage Machine learning based prognostic analysis of a hybrid solar still coupled with evacuated tube collector and stearic acid: A comprehensive 4-E assessment Ultra-narrow strip-shaped silicon solar cells for semi-transparent PV modules: Interplay among cut edges, cell structure, strip dimensions, and partial edge passivation Corrosion behavior of laser-cladding nickel-based coating in high-temperature molten chloride salts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1