{"title":"Decarbonizing energy: Plastic waste trade for zero waste 2040","authors":"Xiang Zhao , Fengqi You","doi":"10.1016/j.adapen.2025.100216","DOIUrl":null,"url":null,"abstract":"<div><div>Plastics are essential to human activities but also drive climate burdens and global pollution from energy-intensive material production and waste treatment. This study proposes and evaluates sustainable technology roadmaps under energy transitions to non-fossils to decarbonize the plastic life cycle and mitigate pollution across 202 global countries from 2024 to 2060. The results show that substituting plastic use, combined with advanced chemical recycling and carbon capture utilization powered by renewables, minimizes waste generation and pollution. In North America and Europe, replacing 56.7 % of plastics with glass, metal, and biodegradable alternatives coupled with chemical recycling can achieve zero annual waste by 2040 or 2035 with biomass-powered carbon capture and utilization. In African and Southeast Asian countries, this net-zero waste goal will be delayed to 2055 due to excessive plastic waste from global trade imports. Strategies including a 50 % cross-border tariff increment on plastic waste export and promoting alternative material use can reduce 87.45 % of global waste trade volume and surpluses to developed countries. This study advances the existing local and global plastic pollution mitigation strategies integrating energy decarbonization and transition to strengthen the United Nations Global Plastic Treaty towards minimum plastic pollution.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100216"},"PeriodicalIF":13.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792425000101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Plastics are essential to human activities but also drive climate burdens and global pollution from energy-intensive material production and waste treatment. This study proposes and evaluates sustainable technology roadmaps under energy transitions to non-fossils to decarbonize the plastic life cycle and mitigate pollution across 202 global countries from 2024 to 2060. The results show that substituting plastic use, combined with advanced chemical recycling and carbon capture utilization powered by renewables, minimizes waste generation and pollution. In North America and Europe, replacing 56.7 % of plastics with glass, metal, and biodegradable alternatives coupled with chemical recycling can achieve zero annual waste by 2040 or 2035 with biomass-powered carbon capture and utilization. In African and Southeast Asian countries, this net-zero waste goal will be delayed to 2055 due to excessive plastic waste from global trade imports. Strategies including a 50 % cross-border tariff increment on plastic waste export and promoting alternative material use can reduce 87.45 % of global waste trade volume and surpluses to developed countries. This study advances the existing local and global plastic pollution mitigation strategies integrating energy decarbonization and transition to strengthen the United Nations Global Plastic Treaty towards minimum plastic pollution.