Development and characterization of CoCrFeNi high entropy alloy composites reinforced by B4C ceramic particles

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2025-03-14 DOI:10.1016/j.intermet.2025.108740
Aoxiang Li, Kaiwen Kang, Borui Zhang, Jinshan Zhang, Di Huang, Mingkun Xu, Saike Liu, Yiteng Jiang, Gong Li
{"title":"Development and characterization of CoCrFeNi high entropy alloy composites reinforced by B4C ceramic particles","authors":"Aoxiang Li,&nbsp;Kaiwen Kang,&nbsp;Borui Zhang,&nbsp;Jinshan Zhang,&nbsp;Di Huang,&nbsp;Mingkun Xu,&nbsp;Saike Liu,&nbsp;Yiteng Jiang,&nbsp;Gong Li","doi":"10.1016/j.intermet.2025.108740","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenge of the low yield strength of single-phase FCC high-entropy alloys (HEAs), developing high-performance HEA composites has emerged as a promising strategy for enhancing the mechanical properties of HEAs. In this study, we propose a novel CoCrFeNi-based HEA composites incorporating a small amount of B<sub>4</sub>C ceramic particles. The influence of varying B<sub>4</sub>C ceramic particle content on the microstructure evolution and mechanical properties of CoCrFeNi(B<sub>4</sub>C)<sub>x</sub> HEAs was systematically investigated. Microstructure analysis reveals that increasing the B<sub>4</sub>C ceramic particles promoted the precipitation of M<sub>7</sub>C<sub>3</sub> carbides at grain boundaries, resulting in a dendritic microstructure. Mechanical testing demonstrated a significant improvement in yield strength and Vickers hardness, attributed to the synergistic strengthening of solution and precipitation strengthening. Furthermore, the microhardness of the M<sub>7</sub>C<sub>3</sub> carbides increased from 12.1 GPa to 15.5 GPa with higher B<sub>4</sub>C ceramic particle content, highlighting the contribution of these carbides to the overall hardness of the composite. This design strategy exploits the synergy between the metal matrix and ceramic reinforcements, improving mechanical performance and offering new possibilities for the development of advanced materials for demanding industrial applications.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"181 ","pages":"Article 108740"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525001050","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenge of the low yield strength of single-phase FCC high-entropy alloys (HEAs), developing high-performance HEA composites has emerged as a promising strategy for enhancing the mechanical properties of HEAs. In this study, we propose a novel CoCrFeNi-based HEA composites incorporating a small amount of B4C ceramic particles. The influence of varying B4C ceramic particle content on the microstructure evolution and mechanical properties of CoCrFeNi(B4C)x HEAs was systematically investigated. Microstructure analysis reveals that increasing the B4C ceramic particles promoted the precipitation of M7C3 carbides at grain boundaries, resulting in a dendritic microstructure. Mechanical testing demonstrated a significant improvement in yield strength and Vickers hardness, attributed to the synergistic strengthening of solution and precipitation strengthening. Furthermore, the microhardness of the M7C3 carbides increased from 12.1 GPa to 15.5 GPa with higher B4C ceramic particle content, highlighting the contribution of these carbides to the overall hardness of the composite. This design strategy exploits the synergy between the metal matrix and ceramic reinforcements, improving mechanical performance and offering new possibilities for the development of advanced materials for demanding industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Development and characterization of CoCrFeNi high entropy alloy composites reinforced by B4C ceramic particles Annealing-induced softening and metamagnetictransition control in MnFePSi microwires Laser-beam powder bed fusion and post-build annealing of polycrystalline Fe81Ga19 alloys: Microstructure manipulation and magnetostrictive properties Hot deformation induced microstructural evolution in Fe14Cr ODS alloy manufactured by selective laser melting Mechanosynthesis formation study and electrical resistivity of short milled Fe50Mn35Sn15 Heusler intermetallic compound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1