Gradient flow based phase-field modeling using separable neural networks

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2025-03-14 DOI:10.1016/j.cma.2025.117897
Revanth Mattey , Susanta Ghosh
{"title":"Gradient flow based phase-field modeling using separable neural networks","authors":"Revanth Mattey ,&nbsp;Susanta Ghosh","doi":"10.1016/j.cma.2025.117897","DOIUrl":null,"url":null,"abstract":"<div><div>Allen–Cahn equation is a reaction–diffusion equation and is widely used for modeling phase separation. Machine learning methods for solving the Allen–Cahn equation in its strong form suffer from inaccuracies in collocation techniques, errors in computing higher-order spatial derivatives, and the large system size required by the space–time approach. To overcome these challenges, we propose solving the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> gradient flow of the Ginzburg–Landau free energy functional, which is equivalent to the Allen–Cahn equation, thereby avoiding the second-order spatial derivatives associated with the Allen–Cahn equation. A minimizing movement scheme is employed to solve the gradient flow problem, eliminating the complexities of a space–time approach. We utilize a separable neural network that efficiently represents the phase field through low-rank tensor decomposition. As we use the minimizing movement scheme to numerically solve the gradient flow problem, we thus, refer to the proposed method as the Separable Deep Minimizing Movement (SDMM) method. The evaluation of the functional in the minimizing movement scheme using the Gauss quadrature technique bypasses the inaccuracies associated with collocation techniques traditionally used to solve partial differential equations. A hyperbolic tangent transformation is introduced on the phase field prior to the evaluation of the functional to ensure that it remains strictly bounded within the values of the two phases. For this transformation, theoretical guarantee for energy stability of the minimizing movement scheme is established. Our results suggest that this transformation helps to improve the accuracy and efficiency significantly. The proposed method resolves the challenges faced by state-of-the-art machine learning techniques, outperforming them in both accuracy and efficiency. It is also the first machine learning method to achieve an order of magnitude speed improvement over the finite element method. In addition to its formulation and computational implementation, several case studies illustrate the applicability of the proposed method.<span><span><sup>1</sup></span></span></div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"439 ","pages":"Article 117897"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525001690","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Allen–Cahn equation is a reaction–diffusion equation and is widely used for modeling phase separation. Machine learning methods for solving the Allen–Cahn equation in its strong form suffer from inaccuracies in collocation techniques, errors in computing higher-order spatial derivatives, and the large system size required by the space–time approach. To overcome these challenges, we propose solving the L2 gradient flow of the Ginzburg–Landau free energy functional, which is equivalent to the Allen–Cahn equation, thereby avoiding the second-order spatial derivatives associated with the Allen–Cahn equation. A minimizing movement scheme is employed to solve the gradient flow problem, eliminating the complexities of a space–time approach. We utilize a separable neural network that efficiently represents the phase field through low-rank tensor decomposition. As we use the minimizing movement scheme to numerically solve the gradient flow problem, we thus, refer to the proposed method as the Separable Deep Minimizing Movement (SDMM) method. The evaluation of the functional in the minimizing movement scheme using the Gauss quadrature technique bypasses the inaccuracies associated with collocation techniques traditionally used to solve partial differential equations. A hyperbolic tangent transformation is introduced on the phase field prior to the evaluation of the functional to ensure that it remains strictly bounded within the values of the two phases. For this transformation, theoretical guarantee for energy stability of the minimizing movement scheme is established. Our results suggest that this transformation helps to improve the accuracy and efficiency significantly. The proposed method resolves the challenges faced by state-of-the-art machine learning techniques, outperforming them in both accuracy and efficiency. It is also the first machine learning method to achieve an order of magnitude speed improvement over the finite element method. In addition to its formulation and computational implementation, several case studies illustrate the applicability of the proposed method.1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Spatiotemporal modeling based on manifold learning for collision dynamic prediction of thin-walled structures under oblique load Self-propelling, soft, and slender structures in fluids: Cosserat rods immersed in the velocity–vorticity formulation of the incompressible Navier–Stokes equations Harnessing dynamic turbulent dynamics in parrot optimization algorithm for complex high-dimensional engineering problems Mutual-information-based dimensional learning: Objective algorithms for identification of relevant dimensionless quantities On the mesh insensitivity of the edge-based smoothed finite element method for moving-domain problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1