Resilient Fusion of LMB Densities Based on Medoids

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2025-02-03 DOI:10.1109/JSEN.2025.3534989
Yao Zhou;Lin Gao;Gaiyou Li;Ping Wei
{"title":"Resilient Fusion of LMB Densities Based on Medoids","authors":"Yao Zhou;Lin Gao;Gaiyou Li;Ping Wei","doi":"10.1109/JSEN.2025.3534989","DOIUrl":null,"url":null,"abstract":"This article deals with the problem of resilient fusion of labeled multi-Bernoulli (LMB) densities, which arises in the situation that the sensor network (SN) undergoes abnormal behaviors like malicious attacks, resulting in the change of transmitted data from each sensor node. Compared to fusion algorithms based on perfect SN conditions, a detection procedure should be deployed before performing fusion so as to exclude abnormal data. To this end, we propose to decompose the LMB densities as the union of Bernoulli components (BCs), and then the medoids of BCs are exploited to form the fused LMB density. Besides, a new density-based spatial clustering of applications with noise (DBSCAN)-based label-matching algorithm is proposed. The performance of the proposed algorithm is verified via simulations.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 6","pages":"10370-10379"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10870058/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article deals with the problem of resilient fusion of labeled multi-Bernoulli (LMB) densities, which arises in the situation that the sensor network (SN) undergoes abnormal behaviors like malicious attacks, resulting in the change of transmitted data from each sensor node. Compared to fusion algorithms based on perfect SN conditions, a detection procedure should be deployed before performing fusion so as to exclude abnormal data. To this end, we propose to decompose the LMB densities as the union of Bernoulli components (BCs), and then the medoids of BCs are exploited to form the fused LMB density. Besides, a new density-based spatial clustering of applications with noise (DBSCAN)-based label-matching algorithm is proposed. The performance of the proposed algorithm is verified via simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于介质的LMB密度弹性融合
本文讨论的是标注多伯努利(LMB)密度的弹性融合问题,该问题出现在传感器网络(SN)发生恶意攻击等异常行为,导致每个传感器节点传输的数据发生变化的情况下。与基于完美传感器网络条件的融合算法相比,在进行融合之前应部署一个检测程序,以排除异常数据。为此,我们建议将 LMB 密度分解为伯努利分量(BC)的结合,然后利用 BC 的中间值形成融合的 LMB 密度。此外,还提出了一种新的基于密度的带噪声应用空间聚类(DBSCAN)标签匹配算法。通过仿真验证了所提算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Council 2025 Reviewers List IEEE Sensors Council IEEE Sensors Council Improving the Performance of Heterogeneous LPWANs: An Integrated Small-World and Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1