Reactivity of aragonite with dicalcium phosphate facilitates removal of dental calculus

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Materials Science: Materials in Medicine Pub Date : 2025-03-15 DOI:10.1007/s10856-025-06867-6
Amir Elhadad, Tayebeh Basiri, Ashwaq Al-Hashedi, Sophia Smith, Hanan Moussa, Sadiya Veettil, Eva Mª Pérez Soriano, Faleh Tamimi
{"title":"Reactivity of aragonite with dicalcium phosphate facilitates removal of dental calculus","authors":"Amir Elhadad,&nbsp;Tayebeh Basiri,&nbsp;Ashwaq Al-Hashedi,&nbsp;Sophia Smith,&nbsp;Hanan Moussa,&nbsp;Sadiya Veettil,&nbsp;Eva Mª Pérez Soriano,&nbsp;Faleh Tamimi","doi":"10.1007/s10856-025-06867-6","DOIUrl":null,"url":null,"abstract":"<div><p>Dental calculus, a main contributor of periodontal diseases, is mostly composed of inorganic calcium phosphate species such as dicalcium phosphate, whitlockite, octa calcium phosphate, and hydroxyapatite. Under physiological pH 7.4, dicalcium phosphates can gradually interact with calcium carbonate to form hydroxyapatite. Therefore, we hypothesized that aragonite (Arg) could react with dental calculus, facilitating its removal. To assess the reactivity of Arg with dental calculus, we examined the changes in surface morphology, composition, and topography of Arg and dental calculus upon exposure to each other in an aqueous environment. The impact of Arg on the removal of dental calculus was assessed by brushing polished sections of dental calculus, enamel, and dentin with slurries of Arg and measuring the depth of abrasion using a stylus profilometer. Our results demonstrate that Arg can react with dental calculus in aqueous environment. This reaction increases calculus surface roughness which in turn facilitate dental calculus removal by brushing. Aragonite could be a promising abrasive for toothpaste design for management of dental calculus.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>This study proposes an innovative approach for the softening and removal of dental calculus based on the use of aragonite. This novel approach, which takes advantage of the chemical reactivity between aragonite and the minerals found in dental calculus, opens the door for developing homecare products that could help patients and clinicians more effectively control and manage dental calculus deposits. Anti-calculus Action. Pyrophosphate and carboxylate inhibit calculus formation by preventing calcium phosphate deposition in plaque.</p></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-025-06867-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06867-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dental calculus, a main contributor of periodontal diseases, is mostly composed of inorganic calcium phosphate species such as dicalcium phosphate, whitlockite, octa calcium phosphate, and hydroxyapatite. Under physiological pH 7.4, dicalcium phosphates can gradually interact with calcium carbonate to form hydroxyapatite. Therefore, we hypothesized that aragonite (Arg) could react with dental calculus, facilitating its removal. To assess the reactivity of Arg with dental calculus, we examined the changes in surface morphology, composition, and topography of Arg and dental calculus upon exposure to each other in an aqueous environment. The impact of Arg on the removal of dental calculus was assessed by brushing polished sections of dental calculus, enamel, and dentin with slurries of Arg and measuring the depth of abrasion using a stylus profilometer. Our results demonstrate that Arg can react with dental calculus in aqueous environment. This reaction increases calculus surface roughness which in turn facilitate dental calculus removal by brushing. Aragonite could be a promising abrasive for toothpaste design for management of dental calculus.

Graphical Abstract

This study proposes an innovative approach for the softening and removal of dental calculus based on the use of aragonite. This novel approach, which takes advantage of the chemical reactivity between aragonite and the minerals found in dental calculus, opens the door for developing homecare products that could help patients and clinicians more effectively control and manage dental calculus deposits. Anti-calculus Action. Pyrophosphate and carboxylate inhibit calculus formation by preventing calcium phosphate deposition in plaque.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
期刊最新文献
Reactivity of aragonite with dicalcium phosphate facilitates removal of dental calculus Self-assembled injectable Icariin@ Ti3C2Tx/doxorubicin hydrogel preserving osteogenesis while synergizing photodynamic and chemodynamic therapy for osteosarcoma Progress of porous tantalum surface-modified biomaterial coatings in bone tissue engineering Oral dosage forms for drug delivery to the colon: an existing gap between research and commercial applications Electromagnetic induction disinfection applied to cemented knee arthroplasty implants: safety evaluation of potential changes in the bone cement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1