{"title":"Novel conjugated 5-alkenyl rhodanine tethered 1,4-benzodioxane derivatives as dual-chitinases inhibitors to hinder the growth of Asian corn borer","authors":"Jinxiu Chen, Dongmei Shi, Zhiyang Jiang, Renxuan Zou, Jingyu Zhang, Qing Han, Na Wang, Zhijian Xu, Qing Yang, Hongxia Duan","doi":"10.1007/s00044-025-03382-9","DOIUrl":null,"url":null,"abstract":"<div><p><i>Of</i>ChtI and <i>Of</i>Chi-h are ideal targets for developing agricultural inhibitors against <i>Ostrinia furnacalis</i>. In order to further confirm the importance of conjugated systems in rhodanine derivatives, sixteen novel 1,4-benzodioxane-tethered-rhodanine derivatives were designed and synthesized with or without C=C double bond of 5-alkenyl rhodanine skeleton. Among them, compounds <b>3a</b>–<b>3h</b>, with preserved 5-alkenyl rhodanine skeleton, all exhibited much better inhibitory activities against both <i>Of</i>ChtI and <i>Of</i>Chi-h, compared to that of the corresponding reduced compounds <b>4a</b>–<b>4h</b> without its C=C double bond. The inhibitory mechanism demonstrated that the 5-alkenyl rhodanine conjugated plane was conducive to improving the binding affinity with both two chitinases. Compound <b>3g</b> was identified as the most potential dual-chitinases inhibitor against <i>Of</i>ChtI (<i>K</i><sub>i</sub> = 2.57 μM) and <i>Of</i>Chi-h (<i>K</i><sub>i</sub> = 2.03 μM). The bioassay study also indicated that compound <b>3g</b> displayed the best insecticidal activity against <i>O. furnacalis</i> and distinctive sublethal effect in regulating its growth and development. These 1,4-benzodioxane-tethered-rhodanine derivatives deserved further investigation as novel dual-chitinases inhibitor candidates in the control of <i>O. furnacalis</i>.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"34 4","pages":"882 - 894"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-025-03382-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
OfChtI and OfChi-h are ideal targets for developing agricultural inhibitors against Ostrinia furnacalis. In order to further confirm the importance of conjugated systems in rhodanine derivatives, sixteen novel 1,4-benzodioxane-tethered-rhodanine derivatives were designed and synthesized with or without C=C double bond of 5-alkenyl rhodanine skeleton. Among them, compounds 3a–3h, with preserved 5-alkenyl rhodanine skeleton, all exhibited much better inhibitory activities against both OfChtI and OfChi-h, compared to that of the corresponding reduced compounds 4a–4h without its C=C double bond. The inhibitory mechanism demonstrated that the 5-alkenyl rhodanine conjugated plane was conducive to improving the binding affinity with both two chitinases. Compound 3g was identified as the most potential dual-chitinases inhibitor against OfChtI (Ki = 2.57 μM) and OfChi-h (Ki = 2.03 μM). The bioassay study also indicated that compound 3g displayed the best insecticidal activity against O. furnacalis and distinctive sublethal effect in regulating its growth and development. These 1,4-benzodioxane-tethered-rhodanine derivatives deserved further investigation as novel dual-chitinases inhibitor candidates in the control of O. furnacalis.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.