Modulating phosphate transfer process for promoting phosphorylation activity of acid phosphatase.

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2025-03-11 DOI:10.1016/j.biortech.2025.132348
Kai Linghu, Kangjie Xu, Xinyi Zhao, Jingwen Zhou, Xinglong Wang
{"title":"Modulating phosphate transfer process for promoting phosphorylation activity of acid phosphatase.","authors":"Kai Linghu, Kangjie Xu, Xinyi Zhao, Jingwen Zhou, Xinglong Wang","doi":"10.1016/j.biortech.2025.132348","DOIUrl":null,"url":null,"abstract":"<p><p>Klebsiella pneumonia acid phosphatase is widely employed in the large-scale synthesis of nucleotides. It was found that the phosphate acceptance capability of the substrate limited the efficiency of the phosphate transfer process. By reducing steric hindrance and optimizing substrate interaction with the catalytic site, variants of Klebsiella pneumonia acid phosphatase were designed, with the E104G variant showing significantly enhanced hydrolysis activity while maintaining high phosphorylation activity. Crystal structure and quantum mechanics/molecular mechanics analyses of the E104G variant revealed that the mutation promotes substrate binding and lowers the energy barrier. Based on these insights, several mutations were designed, achieving significantly improved conversion rates. By knocking out degradation-related enzymes, the degradation rates of inosinic acid and guanylic acid were successfully controlled. This study provides a structure-based top-down design strategy that effectively enhances enzyme specificity, offering a promising enzyme candidate for large-scale nucleotide synthesis.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"132348"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132348","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Klebsiella pneumonia acid phosphatase is widely employed in the large-scale synthesis of nucleotides. It was found that the phosphate acceptance capability of the substrate limited the efficiency of the phosphate transfer process. By reducing steric hindrance and optimizing substrate interaction with the catalytic site, variants of Klebsiella pneumonia acid phosphatase were designed, with the E104G variant showing significantly enhanced hydrolysis activity while maintaining high phosphorylation activity. Crystal structure and quantum mechanics/molecular mechanics analyses of the E104G variant revealed that the mutation promotes substrate binding and lowers the energy barrier. Based on these insights, several mutations were designed, achieving significantly improved conversion rates. By knocking out degradation-related enzymes, the degradation rates of inosinic acid and guanylic acid were successfully controlled. This study provides a structure-based top-down design strategy that effectively enhances enzyme specificity, offering a promising enzyme candidate for large-scale nucleotide synthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Editorial Board Enhanced nitrogen prediction and mechanistic process analysis in high-salinity wastewater treatment using interpretable machine learning approach Efficient synthesis of high-active multi-subunit hemoglobins through balanced expression of globins and robust heme-supply in Saccharomyces cerevisiae Modulating phosphate transfer process for promoting phosphorylation activity of acid phosphatase. Diluted swine and aquaculture wastewater enhance carbon sequestration and nutrient removal by the red seaweed Agardhiella subulata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1