Genotoxic Potential of Anthropized Water Bodies in the Hanoi Region of Vietnam Assessed with the Comet Assay on Erythrocytes of Nile Tilapia (Oreochromis niloticus).

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Bulletin of Environmental Contamination and Toxicology Pub Date : 2025-03-13 DOI:10.1007/s00128-025-04023-y
Elodie Pepey, Gwenn Pulliat, Truong Dinh Hoai, Michaël Bruckert, Geneviève Conéjéro, David Boggio, Coline Perrin, Mathilde Valette, Simon Pouil
{"title":"Genotoxic Potential of Anthropized Water Bodies in the Hanoi Region of Vietnam Assessed with the Comet Assay on Erythrocytes of Nile Tilapia (Oreochromis niloticus).","authors":"Elodie Pepey, Gwenn Pulliat, Truong Dinh Hoai, Michaël Bruckert, Geneviève Conéjéro, David Boggio, Coline Perrin, Mathilde Valette, Simon Pouil","doi":"10.1007/s00128-025-04023-y","DOIUrl":null,"url":null,"abstract":"<p><p>The Black and Nhue-Day River sub-basins near Hanoi, Vietnam, are crucial aquatic ecosystems that are suffering from severe pollution stemming from industrial, domestic, and agricultural sources, which pose risks to environmental and public health. We assessed water genotoxicity at four locations along a gradient of urbanization in Hanoi and its peripheral regions: a fish farm at Hoa Binh reservoir (HB), a peri-urban fish farm in Phu Xuyen district (PX), and urban lakes Truc Bach (TB) and Thien Quang (TQ). Using the comet assay on Nile tilapia erythrocytes, DNA damage (% tail DNA), reflecting fragmented DNA that migrates out of the nucleus during electrophoresis, demonstrated significant differences between sites (p < 0.001). Urban lakes exhibited lower damage (TB: 16 ± 10%, TQ: 33 ± 17%), while the highest damage levels were observed in the hydropower reservoir (HB: 70 ± 15%). Trace elements (i.e., As, Cd, Cr, Ni, and Pb) analyzed in water did not exhibit a significant correlation with DNA damage, suggesting the presence of other unexamined contaminants, such as pesticides, that may explain these findings. These genotoxicity results emphasize the need for further research to identify the specific origins of the observed DNA damage, such as potential contributions from agricultural runoff, untreated wastewater, or other unexamined contaminants. Understanding these sources is essential for developing targeted water management practices to mitigate environmental risks and ensure the safety of aquaculture products, particularly in areas like the HB reservoir, where fish farming supports food security.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"114 3","pages":"47"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-025-04023-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Black and Nhue-Day River sub-basins near Hanoi, Vietnam, are crucial aquatic ecosystems that are suffering from severe pollution stemming from industrial, domestic, and agricultural sources, which pose risks to environmental and public health. We assessed water genotoxicity at four locations along a gradient of urbanization in Hanoi and its peripheral regions: a fish farm at Hoa Binh reservoir (HB), a peri-urban fish farm in Phu Xuyen district (PX), and urban lakes Truc Bach (TB) and Thien Quang (TQ). Using the comet assay on Nile tilapia erythrocytes, DNA damage (% tail DNA), reflecting fragmented DNA that migrates out of the nucleus during electrophoresis, demonstrated significant differences between sites (p < 0.001). Urban lakes exhibited lower damage (TB: 16 ± 10%, TQ: 33 ± 17%), while the highest damage levels were observed in the hydropower reservoir (HB: 70 ± 15%). Trace elements (i.e., As, Cd, Cr, Ni, and Pb) analyzed in water did not exhibit a significant correlation with DNA damage, suggesting the presence of other unexamined contaminants, such as pesticides, that may explain these findings. These genotoxicity results emphasize the need for further research to identify the specific origins of the observed DNA damage, such as potential contributions from agricultural runoff, untreated wastewater, or other unexamined contaminants. Understanding these sources is essential for developing targeted water management practices to mitigate environmental risks and ensure the safety of aquaculture products, particularly in areas like the HB reservoir, where fish farming supports food security.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
3.70%
发文量
230
审稿时长
1.7 months
期刊介绍: The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.
期刊最新文献
Biomonitoring and Source Identification of Potentially Toxic Metals in Different Plant Species in Mountain Ulus, Turkey. Genotoxic Potential of Anthropized Water Bodies in the Hanoi Region of Vietnam Assessed with the Comet Assay on Erythrocytes of Nile Tilapia (Oreochromis niloticus). Glyphosate and AMPA in Groundwater, Surface Water, and Soils Related To Different Types of Crops in Mexico. Physicochemical Properties and Concentration of Metal(oid)s in Soils Used for Different Periods of Time for Sugarcane Cultivation. Soil pH and Rice Chlorophyll Content as Indicators of Grain Productivity and Microbial Community in Acid-Exposed Paddy Mesocosms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1