Suresh Ambati, Quanita J Choudhury, Jesse Ann Peter, Kelley W Moremen, Digantkumar Gopaldas Chapla, Zachary A Lewis, Xiaorong Lin, Richard B Meagher
{"title":"Siglec-targeted liposomes to identify sialoglycans present on fungal pathogens.","authors":"Suresh Ambati, Quanita J Choudhury, Jesse Ann Peter, Kelley W Moremen, Digantkumar Gopaldas Chapla, Zachary A Lewis, Xiaorong Lin, Richard B Meagher","doi":"10.1128/aac.01720-24","DOIUrl":null,"url":null,"abstract":"<p><p>The sialic acid Ig-like lectins Siglec-3 and Siglec-15 are pathogen receptors that bind sialic acid-modified glycoproteins, best characterized in metastatic cancers. Because fungi produce sialoglycans and sialo-glycoproteins, we wondered if Siglecs had the potential for targeted delivery of antifungal drugs. We purified the extracellular V-region Ig-like C2 ligand-binding domains and stalk regions of SIG3 and SIG15. We floated the two polypeptides on the surface of liposomes loaded with amphotericin B (AmB) and labeled with rhodamine B to prepare SIG3-Ls and SIG15-Ls. Using these two reagents, we explored the sialoglycans of two evolutionarily distant and deadly human fungal pathogens, the Mucormycete <i>Rhizopus delemar</i> and the Ascomycete <i>Aspergillus fumigatus</i>. We found that SIG3-Ls and SIG15-Ls localized in a continuous layer over the cell wall surface of germ tubes and hyphae of both fungal species and to the conidia of <i>A. fumigatus</i>. Binding was Neu5Ac-specific and appeared confined to N-linked sialoglycans on fungal proteins. SIG3 and SIG15 proteins bound to diverse sialo-glycoproteins extracted from the hyphae of both species. SIG3-Ls and SIG15-Ls delivering sub-micromolar concentrations of AmB were moderately more effective at inhibiting and/or killing both species relative to control liposomes. We discuss the roles that sialo-glycoproteins may play in fungal pathogens.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0172024"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.01720-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The sialic acid Ig-like lectins Siglec-3 and Siglec-15 are pathogen receptors that bind sialic acid-modified glycoproteins, best characterized in metastatic cancers. Because fungi produce sialoglycans and sialo-glycoproteins, we wondered if Siglecs had the potential for targeted delivery of antifungal drugs. We purified the extracellular V-region Ig-like C2 ligand-binding domains and stalk regions of SIG3 and SIG15. We floated the two polypeptides on the surface of liposomes loaded with amphotericin B (AmB) and labeled with rhodamine B to prepare SIG3-Ls and SIG15-Ls. Using these two reagents, we explored the sialoglycans of two evolutionarily distant and deadly human fungal pathogens, the Mucormycete Rhizopus delemar and the Ascomycete Aspergillus fumigatus. We found that SIG3-Ls and SIG15-Ls localized in a continuous layer over the cell wall surface of germ tubes and hyphae of both fungal species and to the conidia of A. fumigatus. Binding was Neu5Ac-specific and appeared confined to N-linked sialoglycans on fungal proteins. SIG3 and SIG15 proteins bound to diverse sialo-glycoproteins extracted from the hyphae of both species. SIG3-Ls and SIG15-Ls delivering sub-micromolar concentrations of AmB were moderately more effective at inhibiting and/or killing both species relative to control liposomes. We discuss the roles that sialo-glycoproteins may play in fungal pathogens.
期刊介绍:
Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.