Siglec-targeted liposomes to identify sialoglycans present on fungal pathogens.

IF 4.1 2区 医学 Q2 MICROBIOLOGY Antimicrobial Agents and Chemotherapy Pub Date : 2025-03-14 DOI:10.1128/aac.01720-24
Suresh Ambati, Quanita J Choudhury, Jesse Ann Peter, Kelley W Moremen, Digantkumar Gopaldas Chapla, Zachary A Lewis, Xiaorong Lin, Richard B Meagher
{"title":"Siglec-targeted liposomes to identify sialoglycans present on fungal pathogens.","authors":"Suresh Ambati, Quanita J Choudhury, Jesse Ann Peter, Kelley W Moremen, Digantkumar Gopaldas Chapla, Zachary A Lewis, Xiaorong Lin, Richard B Meagher","doi":"10.1128/aac.01720-24","DOIUrl":null,"url":null,"abstract":"<p><p>The sialic acid Ig-like lectins Siglec-3 and Siglec-15 are pathogen receptors that bind sialic acid-modified glycoproteins, best characterized in metastatic cancers. Because fungi produce sialoglycans and sialo-glycoproteins, we wondered if Siglecs had the potential for targeted delivery of antifungal drugs. We purified the extracellular V-region Ig-like C2 ligand-binding domains and stalk regions of SIG3 and SIG15. We floated the two polypeptides on the surface of liposomes loaded with amphotericin B (AmB) and labeled with rhodamine B to prepare SIG3-Ls and SIG15-Ls. Using these two reagents, we explored the sialoglycans of two evolutionarily distant and deadly human fungal pathogens, the Mucormycete <i>Rhizopus delemar</i> and the Ascomycete <i>Aspergillus fumigatus</i>. We found that SIG3-Ls and SIG15-Ls localized in a continuous layer over the cell wall surface of germ tubes and hyphae of both fungal species and to the conidia of <i>A. fumigatus</i>. Binding was Neu5Ac-specific and appeared confined to N-linked sialoglycans on fungal proteins. SIG3 and SIG15 proteins bound to diverse sialo-glycoproteins extracted from the hyphae of both species. SIG3-Ls and SIG15-Ls delivering sub-micromolar concentrations of AmB were moderately more effective at inhibiting and/or killing both species relative to control liposomes. We discuss the roles that sialo-glycoproteins may play in fungal pathogens.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0172024"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.01720-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The sialic acid Ig-like lectins Siglec-3 and Siglec-15 are pathogen receptors that bind sialic acid-modified glycoproteins, best characterized in metastatic cancers. Because fungi produce sialoglycans and sialo-glycoproteins, we wondered if Siglecs had the potential for targeted delivery of antifungal drugs. We purified the extracellular V-region Ig-like C2 ligand-binding domains and stalk regions of SIG3 and SIG15. We floated the two polypeptides on the surface of liposomes loaded with amphotericin B (AmB) and labeled with rhodamine B to prepare SIG3-Ls and SIG15-Ls. Using these two reagents, we explored the sialoglycans of two evolutionarily distant and deadly human fungal pathogens, the Mucormycete Rhizopus delemar and the Ascomycete Aspergillus fumigatus. We found that SIG3-Ls and SIG15-Ls localized in a continuous layer over the cell wall surface of germ tubes and hyphae of both fungal species and to the conidia of A. fumigatus. Binding was Neu5Ac-specific and appeared confined to N-linked sialoglycans on fungal proteins. SIG3 and SIG15 proteins bound to diverse sialo-glycoproteins extracted from the hyphae of both species. SIG3-Ls and SIG15-Ls delivering sub-micromolar concentrations of AmB were moderately more effective at inhibiting and/or killing both species relative to control liposomes. We discuss the roles that sialo-glycoproteins may play in fungal pathogens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
期刊最新文献
Mycobacterium heraklionense hand tenosynovitis-a case description of a three-year treatment course and perioperative measurement of azithromycin target tissue concentrations. Combination therapy delays antimicrobial resistance after adaptive laboratory evolution of Staphylococcus aureus. Fighting resistance with redundancy: a path forward for treating antimicrobial-resistant infections? Siglec-targeted liposomes to identify sialoglycans present on fungal pathogens. The efficacy of a regimen comprising clarithromycin, clofazimine, and bedaquiline in a mouse model of chronic Mycobacterium avium lung infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1