Rescue of loss-of-function long QT syndrome-associated mutations in KV7.1/KCNE1 by the endocannabinoid N-arachidonoyl-L-serine (ARA-S).

IF 6.8 2区 医学 Q1 PHARMACOLOGY & PHARMACY British Journal of Pharmacology Pub Date : 2025-03-14 DOI:10.1111/bph.70008
Irene Hiniesto-Iñigo, Akshay Sridhar, Julien Louradour, Alicia De la Cruz, Siri Lundholm, Amaia Jauregi-Miguel, Federica Giannetti, Luca Sala, Katja E Odening, H Peter Larsson, Nina E Ottosson, Sara I Liin
{"title":"Rescue of loss-of-function long QT syndrome-associated mutations in K<sub>V</sub>7.1/KCNE1 by the endocannabinoid N-arachidonoyl-L-serine (ARA-S).","authors":"Irene Hiniesto-Iñigo, Akshay Sridhar, Julien Louradour, Alicia De la Cruz, Siri Lundholm, Amaia Jauregi-Miguel, Federica Giannetti, Luca Sala, Katja E Odening, H Peter Larsson, Nina E Ottosson, Sara I Liin","doi":"10.1111/bph.70008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Congenital long QT syndrome (LQTS) involves genetic mutations affecting ion channels, leading to a prolonged QT interval and increased risk of potentially lethal ventricular arrhythmias. Mutations in the genes encoding K<sub>V</sub>7.1/KCNE1 are the most frequent, with channel loss-of-function contributing to LQTS. The endocannabinoid N-arachidonoyl-L-serine (ARA-S) has been shown to facilitate activation of wild type K<sub>V</sub>7.1/KCNE1 channels and to counteract a prolonged QT interval in isolated guinea pig hearts. In this study, we examine the ability of ARA-S to facilitate activation of LQTS-associated mutations, in various regions of the channel, and hence to counteract loss-of-function.</p><p><strong>Experimental approach: </strong>The two-electrode voltage clamp technique on Xenopus oocytes expressing human K<sub>V</sub>7.1/KCNE1 channels was used to investigate the effects of ARA-S in 20 LQTS type 1-associated mutations distributed across the channel. Thereafter, different electrophysiology was used to assess ARA-S effects in mammalian cells.</p><p><strong>Key results: </strong>ARA-S enhanced the function of all mutated channels by shifting V<sub>50</sub> and increasing current amplitude. However, the magnitude of effect varied, related to whether mutations were in one of the two putative ARA-S binding sites on the channel as suggested by molecular dynamics simulations. ARA-S displayed translational potential by facilitating channel opening in mammalian cells and shortening the action potential duration in cardiomyocytes.</p><p><strong>Conclusions and implications: </strong>This study demonstrates the rescuing capability of ARA-S on a diverse set of LQTS mutants. These insights may aid in developing drug compounds using ARA-S sites and mechanisms and guide interpretation of which LQTS mutants respond well to such compounds.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.70008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Congenital long QT syndrome (LQTS) involves genetic mutations affecting ion channels, leading to a prolonged QT interval and increased risk of potentially lethal ventricular arrhythmias. Mutations in the genes encoding KV7.1/KCNE1 are the most frequent, with channel loss-of-function contributing to LQTS. The endocannabinoid N-arachidonoyl-L-serine (ARA-S) has been shown to facilitate activation of wild type KV7.1/KCNE1 channels and to counteract a prolonged QT interval in isolated guinea pig hearts. In this study, we examine the ability of ARA-S to facilitate activation of LQTS-associated mutations, in various regions of the channel, and hence to counteract loss-of-function.

Experimental approach: The two-electrode voltage clamp technique on Xenopus oocytes expressing human KV7.1/KCNE1 channels was used to investigate the effects of ARA-S in 20 LQTS type 1-associated mutations distributed across the channel. Thereafter, different electrophysiology was used to assess ARA-S effects in mammalian cells.

Key results: ARA-S enhanced the function of all mutated channels by shifting V50 and increasing current amplitude. However, the magnitude of effect varied, related to whether mutations were in one of the two putative ARA-S binding sites on the channel as suggested by molecular dynamics simulations. ARA-S displayed translational potential by facilitating channel opening in mammalian cells and shortening the action potential duration in cardiomyocytes.

Conclusions and implications: This study demonstrates the rescuing capability of ARA-S on a diverse set of LQTS mutants. These insights may aid in developing drug compounds using ARA-S sites and mechanisms and guide interpretation of which LQTS mutants respond well to such compounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.40
自引率
12.30%
发文量
270
审稿时长
2.0 months
期刊介绍: The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries. Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues. In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.
期刊最新文献
High-throughput screening identifies bazedoxifene as a potential therapeutic for dysferlin-deficient limb girdle muscular dystrophy. Sub-chronic administration of AM6545 enhances cognitive performance and induces hippocampal synaptic plasticity changes in naïve mice. TLR2 activates AP-1 to facilitate CTGF transcription and stimulate doxorubicin-induced myocardial injury. Drug-likeness evaluation and inhibitory mechanism of the emodin derivative on cardiac fibrosis based on metastasis-associated protein 3. Rescue of loss-of-function long QT syndrome-associated mutations in KV7.1/KCNE1 by the endocannabinoid N-arachidonoyl-L-serine (ARA-S).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1