Synthesizing Genotoxicity Results in the MultiFlow Assay With Point-of-Departure Analysis and ToxPi Visualization Techniques.

IF 2.3 4区 医学 Q3 ENVIRONMENTAL SCIENCES Environmental and Molecular Mutagenesis Pub Date : 2025-03-13 DOI:10.1002/em.70003
Yusuf Hussien, Stephen D Dertinger, George E Johnson
{"title":"Synthesizing Genotoxicity Results in the MultiFlow Assay With Point-of-Departure Analysis and ToxPi Visualization Techniques.","authors":"Yusuf Hussien, Stephen D Dertinger, George E Johnson","doi":"10.1002/em.70003","DOIUrl":null,"url":null,"abstract":"<p><p>In vitro genotoxicity has historically served a hazard identification role, with simple binary outcomes provided for each of several single endpoint assays. This will need to change, given: (i) efforts to curtail animal testing, (ii) the increased use of multiplexed in vitro assays and the ongoing development of NAMS, and (iii) the desire to holistically consider quantitative results from multiple biomarkers/endpoints that take potency into consideration. To help facilitate more quantitative analyses of multiple biomarkers and/or assay streams, we explored the combined use of PROAST and Toxicological Prioritization Index (ToxPi) software. As a proofofconcept, this investigation employed the MultiFlow DNA damage assay, focusing on γH2AX and p53 biomarkers at two time points, whereby 10 genotoxicants were evaluated in the presence and absence of rat liver S9 metabolic activation. Whereas PROAST was used to calculate BMD point estimates and confidence intervals (CIs), ToxPi synthesized the BMD results into visual, quantitative summaries conveying genotoxicity and metabolic properties. Our analyses suggest that ToxPi's data synthesis and visualization modules provide useful insights into compound response, chemical grouping, and genotoxic mechanisms. By integrating multiple data sources, we find that ToxPi offers a powerful complementary approach to traditional BMD CI graphs, particularly for the simultaneous analysis of multiple biomarkers, enhancing chemical potency analysis of complex datasets.</p>","PeriodicalId":11791,"journal":{"name":"Environmental and Molecular Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Molecular Mutagenesis","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/em.70003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro genotoxicity has historically served a hazard identification role, with simple binary outcomes provided for each of several single endpoint assays. This will need to change, given: (i) efforts to curtail animal testing, (ii) the increased use of multiplexed in vitro assays and the ongoing development of NAMS, and (iii) the desire to holistically consider quantitative results from multiple biomarkers/endpoints that take potency into consideration. To help facilitate more quantitative analyses of multiple biomarkers and/or assay streams, we explored the combined use of PROAST and Toxicological Prioritization Index (ToxPi) software. As a proofofconcept, this investigation employed the MultiFlow DNA damage assay, focusing on γH2AX and p53 biomarkers at two time points, whereby 10 genotoxicants were evaluated in the presence and absence of rat liver S9 metabolic activation. Whereas PROAST was used to calculate BMD point estimates and confidence intervals (CIs), ToxPi synthesized the BMD results into visual, quantitative summaries conveying genotoxicity and metabolic properties. Our analyses suggest that ToxPi's data synthesis and visualization modules provide useful insights into compound response, chemical grouping, and genotoxic mechanisms. By integrating multiple data sources, we find that ToxPi offers a powerful complementary approach to traditional BMD CI graphs, particularly for the simultaneous analysis of multiple biomarkers, enhancing chemical potency analysis of complex datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
10.70%
发文量
52
审稿时长
12-24 weeks
期刊介绍: Environmental and Molecular Mutagenesis publishes original research manuscripts, reviews and commentaries on topics related to six general areas, with an emphasis on subject matter most suited for the readership of EMM as outlined below. The journal is intended for investigators in fields such as molecular biology, biochemistry, microbiology, genetics and epigenetics, genomics and epigenomics, cancer research, neurobiology, heritable mutation, radiation biology, toxicology, and molecular & environmental epidemiology.
期刊最新文献
Extracellular Vesicle (EV) Mechanisms of Toxicity for Per and Polyfluoroalkyl Substances: Comparing Transcriptomic Points of Departure Across Global Versus EV Regulatory Gene Sets. Issue Information Mitigation of Volatile Chemicals' Effect on Adjacent Microtiter Plate Wells. Synthesizing Genotoxicity Results in the MultiFlow Assay With Point-of-Departure Analysis and ToxPi Visualization Techniques. Review of Transcriptomic Biomarkers That Predict In Vitro Genotoxicity in Human Cell Lines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1