GEF14 acts as a specific activator of the plant osmotic signaling pathway by controlling ROP6 nanodomain formation.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Reports Pub Date : 2025-03-13 DOI:10.1038/s44319-025-00412-w
Lucille Gorgues, Marija Smokvarska, Caroline Mercier, Clara P Igisch, Amandine Crabos, Armelle Dongois, Vincent Bayle, Jean-Bernard Fiche, Philippe Nacry, Marcelo Nollmann, Yvon Jaillais, Alexandre Martinière
{"title":"GEF14 acts as a specific activator of the plant osmotic signaling pathway by controlling ROP6 nanodomain formation.","authors":"Lucille Gorgues, Marija Smokvarska, Caroline Mercier, Clara P Igisch, Amandine Crabos, Armelle Dongois, Vincent Bayle, Jean-Bernard Fiche, Philippe Nacry, Marcelo Nollmann, Yvon Jaillais, Alexandre Martinière","doi":"10.1038/s44319-025-00412-w","DOIUrl":null,"url":null,"abstract":"<p><p>During their growth, plants encounter and respond to a variety of environmental signals. However, the mechanisms underlying the integration and specificity of signals remain poorly understood. Rho of Plant (ROP) signaling plays a central role in various processes, including polar cell growth and responses to different stimuli, and relies on stimuli-dependent membrane nanodomains. The effector composition of ROP6 nanodomains varies depending on the signal and may be involved in downstream signal specificity. In this study, we explore how ROP6 signaling is regulated by Guanine nucleotide Exchange Factor (GEF) during osmotic stress. We find that GEF14 is required for osmotically induced ROS accumulation. This isoform acts specifically in response to osmotic stimulation, since it is dispensable for other stimuli. We demonstrate that GEF14 activates ROP6 and controls its clustering in a signal-specific manner. Furthermore, we find that GEF14 relocates from the cytoplasm to clusters at the plasma membrane after osmotic stimulation. Together, our results suggest that a single GEF isoform can encode for signal specificity controlling ROP6 activation, clustering and downstream cellular responses.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00412-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During their growth, plants encounter and respond to a variety of environmental signals. However, the mechanisms underlying the integration and specificity of signals remain poorly understood. Rho of Plant (ROP) signaling plays a central role in various processes, including polar cell growth and responses to different stimuli, and relies on stimuli-dependent membrane nanodomains. The effector composition of ROP6 nanodomains varies depending on the signal and may be involved in downstream signal specificity. In this study, we explore how ROP6 signaling is regulated by Guanine nucleotide Exchange Factor (GEF) during osmotic stress. We find that GEF14 is required for osmotically induced ROS accumulation. This isoform acts specifically in response to osmotic stimulation, since it is dispensable for other stimuli. We demonstrate that GEF14 activates ROP6 and controls its clustering in a signal-specific manner. Furthermore, we find that GEF14 relocates from the cytoplasm to clusters at the plasma membrane after osmotic stimulation. Together, our results suggest that a single GEF isoform can encode for signal specificity controlling ROP6 activation, clustering and downstream cellular responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
期刊最新文献
Mechanisms of cilia regeneration in Xenopus multiciliated epithelium in vivo. Regulating stem cell-based embryo model research in Japan : Proposals, debates, and future directions. GEF14 acts as a specific activator of the plant osmotic signaling pathway by controlling ROP6 nanodomain formation. Transdifferentiation of plasmatocytes to crystal cells in the lymph gland of Drosophila melanogaster. Deficiency of neuronal LGR4 increases energy expenditure and inhibits food intake via hypothalamic leptin signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1