Diaphorina citri E3 ubiquitin ligase RNF115 inhibits CLas bacterial proliferation by targeting to the host histone H1.

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY Insect Science Pub Date : 2025-03-13 DOI:10.1111/1744-7917.70022
Xiao-Jin Zou, Yi-Hong Zhang, Can Zhang, Xiao-Fang Yuan, Meng-Jun Yun, Lian-Jie Xie, Xiao-Qiang Liu, Wen-Feng Kang, Wei Chen, Ying-Xue Liu, Ai-Yun Wang, Zhan-Jun Lu, Hai-Zhong Yu
{"title":"Diaphorina citri E3 ubiquitin ligase RNF115 inhibits CLas bacterial proliferation by targeting to the host histone H1.","authors":"Xiao-Jin Zou, Yi-Hong Zhang, Can Zhang, Xiao-Fang Yuan, Meng-Jun Yun, Lian-Jie Xie, Xiao-Qiang Liu, Wen-Feng Kang, Wei Chen, Ying-Xue Liu, Ai-Yun Wang, Zhan-Jun Lu, Hai-Zhong Yu","doi":"10.1111/1744-7917.70022","DOIUrl":null,"url":null,"abstract":"<p><p>The Asian citrus psyllid (ACP), Diaphorina citri, serves as the primary vector for Candidatus Liberibacter asiaticus (CLas), the pathogen responsible for citrus Huanglongbing (HLB). D. citri modulates the expression of its key proteins in response to CLas infection. Previous research has revealed that CLas infection significantly alters the expression levels of E3 ubiquitin ligases in D. citri; however, the specific functions of these E3 ligases remain largely uncharacterized. In this study, a total of 11 E3 ubiquitin ligases were identified from the proteomics database of D. citri, among which E3 ubiquitin ligase RNF115 was significantly upregulated following CLas infection. RING finger protein 115 (RNF115) consists of 156 amino acids and contains a RING finger domain at its N-terminus. Silencing RNF115 via RNA interference (RNAi) and injecting the inhibitor disulfiram, which targets RNF115, significantly increased CLas bacterial content in D. citri. In contrast, injection of recombinant RNF115 protein markedly inhibited CLas bacterial proliferation. Furthermore, interaction between RNF115 and D. citri histone H1 was confirmed using yeast 2-hybrid assay, pull-down experiments and molecular docking analysis. Knockdown of histone H1 via RNAi significantly reduced CLas bacterial content, whereas injection of recombinant histone H1 protein led to an increase in CLas content within D. citri. These findings suggest that CLas infection may induce an upregulation of RNF115 expression in D. citri, leading to subsequent interactions with histone H1 that facilitate the ubiquitination of histone H1, ultimately resulting in reduced expression levels and inhibiting CLas proliferation within D. citri.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.70022","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Asian citrus psyllid (ACP), Diaphorina citri, serves as the primary vector for Candidatus Liberibacter asiaticus (CLas), the pathogen responsible for citrus Huanglongbing (HLB). D. citri modulates the expression of its key proteins in response to CLas infection. Previous research has revealed that CLas infection significantly alters the expression levels of E3 ubiquitin ligases in D. citri; however, the specific functions of these E3 ligases remain largely uncharacterized. In this study, a total of 11 E3 ubiquitin ligases were identified from the proteomics database of D. citri, among which E3 ubiquitin ligase RNF115 was significantly upregulated following CLas infection. RING finger protein 115 (RNF115) consists of 156 amino acids and contains a RING finger domain at its N-terminus. Silencing RNF115 via RNA interference (RNAi) and injecting the inhibitor disulfiram, which targets RNF115, significantly increased CLas bacterial content in D. citri. In contrast, injection of recombinant RNF115 protein markedly inhibited CLas bacterial proliferation. Furthermore, interaction between RNF115 and D. citri histone H1 was confirmed using yeast 2-hybrid assay, pull-down experiments and molecular docking analysis. Knockdown of histone H1 via RNAi significantly reduced CLas bacterial content, whereas injection of recombinant histone H1 protein led to an increase in CLas content within D. citri. These findings suggest that CLas infection may induce an upregulation of RNF115 expression in D. citri, leading to subsequent interactions with histone H1 that facilitate the ubiquitination of histone H1, ultimately resulting in reduced expression levels and inhibiting CLas proliferation within D. citri.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
期刊最新文献
Diaphorina citri E3 ubiquitin ligase RNF115 inhibits CLas bacterial proliferation by targeting to the host histone H1. Genetic consequences of domestication and refreshment on colonies of the South American fruit fly. Doublesex regulates male sexual development in the cricket Gryllus bimaculatus. m-Aminophenylacetylene shortened the eggsac-carrying stages in the wolf spider through enhancing the synthesis of prostaglandins. IIS/TOR network plays an essential role in ovarian development in the pupal stage of the fall armyworm, Spodoptera frugiperda.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1