{"title":"Controlling bulk electrostatics in electrolytes by surface polarization.","authors":"Ralf Blossey, Rudolf Podgornik","doi":"10.1063/5.0253254","DOIUrl":null,"url":null,"abstract":"<p><p>The benchmark theory of hydration forces that relies on the phenomenological expressions developed by Marčelja and Radić (MR) has recently been revived by experimental, computational, and theoretical advances. Here, we consider the effect of surface polarization on electrolytes in a slab geometry by combining the MR approach to polarization with Poisson-Boltzmann theory. Due to the coupling of bulk and surface fields, not only is the electrostatics modified by polarization, but maybe even more importantly, vice versa: a finite polarization at the wall is sufficient to generate a finite electrostatic potential even in the absence of net charges on the wall. We determine the polarization and electrostatic potential profiles and the free energy of the system. Our results show that the presence of surface polarization alone suffices to imprint the bulk structural properties on the electrostatic field in an electrolyte.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0253254","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The benchmark theory of hydration forces that relies on the phenomenological expressions developed by Marčelja and Radić (MR) has recently been revived by experimental, computational, and theoretical advances. Here, we consider the effect of surface polarization on electrolytes in a slab geometry by combining the MR approach to polarization with Poisson-Boltzmann theory. Due to the coupling of bulk and surface fields, not only is the electrostatics modified by polarization, but maybe even more importantly, vice versa: a finite polarization at the wall is sufficient to generate a finite electrostatic potential even in the absence of net charges on the wall. We determine the polarization and electrostatic potential profiles and the free energy of the system. Our results show that the presence of surface polarization alone suffices to imprint the bulk structural properties on the electrostatic field in an electrolyte.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.