The loss of both pUL16 and pUL21 in HSV-1-infected cells alters capsid-tegument composition, nuclear membrane architecture, cytoplasmic maturation and cell-to-cell spread.

IF 3.6 4区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of General Virology Pub Date : 2025-03-01 DOI:10.1099/jgv.0.002083
Kellen Roddy, Peter Grzesik, Barbara J Smith, Nathan Ko, Sanjay Vashee, Prashant J Desai
{"title":"The loss of both pUL16 and pUL21 in HSV-1-infected cells alters capsid-tegument composition, nuclear membrane architecture, cytoplasmic maturation and cell-to-cell spread.","authors":"Kellen Roddy, Peter Grzesik, Barbara J Smith, Nathan Ko, Sanjay Vashee, Prashant J Desai","doi":"10.1099/jgv.0.002083","DOIUrl":null,"url":null,"abstract":"<p><p>Previously, we had developed synthetic genomics methods to assemble an infectious clone of herpes simplex virus type-1 (HSV-1) strain KOS. To do this, the genome was assembled from 11 separate cloned fragments in yeast using transformation-associated recombination. Using this method, we generated null mutations in five tegument protein-coding genes as well as different combinations of these mutants. The single-locus mutants were all able to plaque on Vero cells. However, one multi-locus combination, ∆UL16/UL21, proved lethal for virus replication in non-permissive cells. The proteins encoded by the genes UL16 and UL21 are of interest because they are known to physically interact and are constituents of the tegument structure. Furthermore, their roles in HSV-1-infected cells are unclear. Both are dispensable for HSV-1 replication; however, in HSV-2, their mutation results in nuclear retention of assembled capsids and has activities that impact nuclear membrane integrity as well as activities of proteins that function in nuclear egress. We thus characterized these HSV-1 viruses that carry the single and double mutants. What we found was that the single mutants could replicate within cells and spread from infected to uninfected cells, albeit at significantly reduced levels. However, the double mutant (∆16/21) could not produce infectious progeny in a 24 h growth cycle and could not spread from cell to cell. Confocal microscopy of VP16-Venus expressed by these viruses as well as immunofluorescence assays for glycoprotein B showed perturbation of the nuclear membrane, which was pronounced in ∆21 and ∆16/21 infected cells. All the mutants assembled DNA-filled capsids as judged by ultrastructural analyses and sedimentation studies. Electron microscopy revealed the presence of numerous mature viruses in WT-infected cells but fewer such particles in the ∆16- and ∆21-infected cells. What we discovered is that in cells where both pUL16 and pUL21 are absent, cytoplasmic capsids were evident, but mature enveloped particles were not detected. The capsid particles isolated from all the single- and multi-locus mutant-infected cells showed significantly lower levels of incorporation of both VP16 and pUL37 when compared to the WT capsids. This reduced incorporation may be related to the loss of the integrity of the architecture of the nuclear membrane. Interestingly, the incorporation of pUL16 was not affected by the absence of pUL21 and vice versa, as judged by immunoblots. These data now show that of the tegument proteins, like the essential pUL36, pUL37 and VP16, the complex of pUL16 and pUL21 should be considered as important mediators of maturation and cell-to-cell spread of the particle.</p>","PeriodicalId":15880,"journal":{"name":"Journal of General Virology","volume":"106 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1099/jgv.0.002083","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previously, we had developed synthetic genomics methods to assemble an infectious clone of herpes simplex virus type-1 (HSV-1) strain KOS. To do this, the genome was assembled from 11 separate cloned fragments in yeast using transformation-associated recombination. Using this method, we generated null mutations in five tegument protein-coding genes as well as different combinations of these mutants. The single-locus mutants were all able to plaque on Vero cells. However, one multi-locus combination, ∆UL16/UL21, proved lethal for virus replication in non-permissive cells. The proteins encoded by the genes UL16 and UL21 are of interest because they are known to physically interact and are constituents of the tegument structure. Furthermore, their roles in HSV-1-infected cells are unclear. Both are dispensable for HSV-1 replication; however, in HSV-2, their mutation results in nuclear retention of assembled capsids and has activities that impact nuclear membrane integrity as well as activities of proteins that function in nuclear egress. We thus characterized these HSV-1 viruses that carry the single and double mutants. What we found was that the single mutants could replicate within cells and spread from infected to uninfected cells, albeit at significantly reduced levels. However, the double mutant (∆16/21) could not produce infectious progeny in a 24 h growth cycle and could not spread from cell to cell. Confocal microscopy of VP16-Venus expressed by these viruses as well as immunofluorescence assays for glycoprotein B showed perturbation of the nuclear membrane, which was pronounced in ∆21 and ∆16/21 infected cells. All the mutants assembled DNA-filled capsids as judged by ultrastructural analyses and sedimentation studies. Electron microscopy revealed the presence of numerous mature viruses in WT-infected cells but fewer such particles in the ∆16- and ∆21-infected cells. What we discovered is that in cells where both pUL16 and pUL21 are absent, cytoplasmic capsids were evident, but mature enveloped particles were not detected. The capsid particles isolated from all the single- and multi-locus mutant-infected cells showed significantly lower levels of incorporation of both VP16 and pUL37 when compared to the WT capsids. This reduced incorporation may be related to the loss of the integrity of the architecture of the nuclear membrane. Interestingly, the incorporation of pUL16 was not affected by the absence of pUL21 and vice versa, as judged by immunoblots. These data now show that of the tegument proteins, like the essential pUL36, pUL37 and VP16, the complex of pUL16 and pUL21 should be considered as important mediators of maturation and cell-to-cell spread of the particle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of General Virology
Journal of General Virology 医学-病毒学
CiteScore
7.70
自引率
2.60%
发文量
91
审稿时长
3 months
期刊介绍: JOURNAL OF GENERAL VIROLOGY (JGV), a journal of the Society for General Microbiology (SGM), publishes high-calibre research papers with high production standards, giving the journal a worldwide reputation for excellence and attracting an eminent audience.
期刊最新文献
Dynamic regulation of autophagy during Semliki Forest virus infection of neuroblastoma cells. Bacilladnaviridae: refined taxonomy and new insights into the biology and evolution of diatom-infecting DNA viruses. The loss of both pUL16 and pUL21 in HSV-1-infected cells alters capsid-tegument composition, nuclear membrane architecture, cytoplasmic maturation and cell-to-cell spread. Erratum: Out-of-sync evolutionary patterns and mutual interplay of major and minor capsid proteins in norovirus GII.2. Targeting pseudoknots with Cas13b inhibits porcine epidemic diarrhoea virus replication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1