Rodrigo E Catalan, Alexandros A Fragkopoulos, Antoine Girot, Maike Lorenz, Oliver Bäumchen
{"title":"Preparation, maintenance and propagation of synchronous cultures of photoactive Chlamydomonas cells.","authors":"Rodrigo E Catalan, Alexandros A Fragkopoulos, Antoine Girot, Maike Lorenz, Oliver Bäumchen","doi":"10.1038/s41596-024-01135-3","DOIUrl":null,"url":null,"abstract":"<p><p>The systematic cultivation of species of photosynthetically active 'green' microorganisms in research labs started in the 1940s. Among these microorganisms, Chlamydomonas represents a genus of green biciliated microalgae, of which Chlamydomonas reinhardtii has become the main describing species. For decades C. reinhardtii has been used as an established model organism in biology, including research areas such as molecular biology of eukaryotes, photosynthesis, light receptors, cell metabolism, the dynamics of microtubule assembly and protein transport along cilia. More recently, the use of suspensions of light-responsive living microorganisms has seen a major expansion from the life sciences to the biophysics, statistical physics, fluid dynamics and bioengineering communities. Studies that substantially advance the state of the art in these research areas require the reliable preparation and maintenance of viable, monodisperse and synchronous cell cultures. Although some technical aspects are shared with standard procedures in cell biology and microbiology, Chlamydomonas and its relatives are photosensitive and, simultaneously, motile, meaning this microorganism requires tailored cultivation protocols that are specific to this species. Here we provide guidance on which Chlamydomonas wild-type and mutant strains are suitable for specific experiments and provide detailed step-by-step procedures to measure culture synchronicity, growth rate of the population, average cell size and motility features. The reliable preparation of cell cultures may facilitate future interdisciplinary research using living suspensions of photoactive microorganisms.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01135-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The systematic cultivation of species of photosynthetically active 'green' microorganisms in research labs started in the 1940s. Among these microorganisms, Chlamydomonas represents a genus of green biciliated microalgae, of which Chlamydomonas reinhardtii has become the main describing species. For decades C. reinhardtii has been used as an established model organism in biology, including research areas such as molecular biology of eukaryotes, photosynthesis, light receptors, cell metabolism, the dynamics of microtubule assembly and protein transport along cilia. More recently, the use of suspensions of light-responsive living microorganisms has seen a major expansion from the life sciences to the biophysics, statistical physics, fluid dynamics and bioengineering communities. Studies that substantially advance the state of the art in these research areas require the reliable preparation and maintenance of viable, monodisperse and synchronous cell cultures. Although some technical aspects are shared with standard procedures in cell biology and microbiology, Chlamydomonas and its relatives are photosensitive and, simultaneously, motile, meaning this microorganism requires tailored cultivation protocols that are specific to this species. Here we provide guidance on which Chlamydomonas wild-type and mutant strains are suitable for specific experiments and provide detailed step-by-step procedures to measure culture synchronicity, growth rate of the population, average cell size and motility features. The reliable preparation of cell cultures may facilitate future interdisciplinary research using living suspensions of photoactive microorganisms.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.