Irrem-Laareb Mohammad, Marina I Giannotti, Elise Fourgous, Yvan Boublik, Alejandro Fernández, Anabel-Lise Le Roux, Audrey Sirvent, Marta Taulés, Serge Roche, Miquel Pons
{"title":"Lipid-driven Src self-association modulates its transformation capacity.","authors":"Irrem-Laareb Mohammad, Marina I Giannotti, Elise Fourgous, Yvan Boublik, Alejandro Fernández, Anabel-Lise Le Roux, Audrey Sirvent, Marta Taulés, Serge Roche, Miquel Pons","doi":"10.26508/lsa.202403019","DOIUrl":null,"url":null,"abstract":"<p><p>Src tyrosine kinase regulates cell growth and adhesion through membrane signaling, and its deregulation is associated with cancer. Although active Src is anchored to the plasma membrane, the role of membrane lipids in its regulation remains unclear. Here, we report that Src self-associates via a lysine cluster in its SH4 region, a process mediated by lipids in human cells and in vitro. Mutation of the lysine cluster to arginine alters Src self-association and modulates its transforming function in human cells. Lipid-anchored micron-sized condensates of full-length Src form in supported homogeneous lipid bilayers (i.e., independently of lipid phase separation). Condensates also arise from the purified Src N-terminal regulatory element, which includes the myristoylated SH4 domain, the intrinsically disordered Unique domain, and the globular SH3 domain. However, the isolated SH4 domain alone forms small protein-lipid clusters rather than micron-sized condensates. Our findings reveal lipid-mediated kinase self-association as an additional regulatory mechanism for Src. This mechanism may also apply to other membrane-associated signaling proteins containing similar lysine clusters in their unstructured regions.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202403019","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Src tyrosine kinase regulates cell growth and adhesion through membrane signaling, and its deregulation is associated with cancer. Although active Src is anchored to the plasma membrane, the role of membrane lipids in its regulation remains unclear. Here, we report that Src self-associates via a lysine cluster in its SH4 region, a process mediated by lipids in human cells and in vitro. Mutation of the lysine cluster to arginine alters Src self-association and modulates its transforming function in human cells. Lipid-anchored micron-sized condensates of full-length Src form in supported homogeneous lipid bilayers (i.e., independently of lipid phase separation). Condensates also arise from the purified Src N-terminal regulatory element, which includes the myristoylated SH4 domain, the intrinsically disordered Unique domain, and the globular SH3 domain. However, the isolated SH4 domain alone forms small protein-lipid clusters rather than micron-sized condensates. Our findings reveal lipid-mediated kinase self-association as an additional regulatory mechanism for Src. This mechanism may also apply to other membrane-associated signaling proteins containing similar lysine clusters in their unstructured regions.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.