A novel preoperative prosthetic position planning algorithm for total hip arthroplasty based on the no-impingement principle: A case study.

Tao Feng, Hao Tang, Xiaogang Zhang, Yali Zhang, Yixin Zhou, Zhongmin Jin
{"title":"A novel preoperative prosthetic position planning algorithm for total hip arthroplasty based on the no-impingement principle: A case study.","authors":"Tao Feng, Hao Tang, Xiaogang Zhang, Yali Zhang, Yixin Zhou, Zhongmin Jin","doi":"10.1177/09544119251319960","DOIUrl":null,"url":null,"abstract":"<p><p>Most preoperative planning calculations of impingement-free range of motion (IFROM) and impingement-free safe zone (IFSZ) rarely consider non-standard shaped prostheses and bony impingement (BI) for total hip arthroplasty (THA). This research developed a novel algorithm that considers BI, prosthetic impingement, pelvic tilt angle (<i>PT</i>) in the sagittal plane, and non-standard-shaped hip prostheses. This research aimed to investigate the effect of BI and <i>PT</i> on hip IFROM, IFSZ, and the BI rate. Using this algorithm to calculate a case, we found that when considering BI, (1) the upper limit of the hip IFROM was decreased, and the different <i>PT</i> affected the upper limit of the hip IFROM of various movements; (2) the BI rate of the flat-rim liner in standing and sitting postures were 54.6% and 67%; and (3) the maximum IFSZ size of the flat-rim liner was reduced by 12%, the reduction rate of the combined pelvic position with a non-zero IFSZ size was 83.2% for the flat-rim liner. Consideration of BI further reduces the IFROM, the IFSZ size, and the number of the combined position of the pelvis with a non-zero IFSZ size of the hip joint. Importantly, this algorithm provides a reliable tool for personalized prosthesis positioning for THA. This algorithm has excellent applications in personalized surgical planning and surgical robotics.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251319960"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251319960","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Most preoperative planning calculations of impingement-free range of motion (IFROM) and impingement-free safe zone (IFSZ) rarely consider non-standard shaped prostheses and bony impingement (BI) for total hip arthroplasty (THA). This research developed a novel algorithm that considers BI, prosthetic impingement, pelvic tilt angle (PT) in the sagittal plane, and non-standard-shaped hip prostheses. This research aimed to investigate the effect of BI and PT on hip IFROM, IFSZ, and the BI rate. Using this algorithm to calculate a case, we found that when considering BI, (1) the upper limit of the hip IFROM was decreased, and the different PT affected the upper limit of the hip IFROM of various movements; (2) the BI rate of the flat-rim liner in standing and sitting postures were 54.6% and 67%; and (3) the maximum IFSZ size of the flat-rim liner was reduced by 12%, the reduction rate of the combined pelvic position with a non-zero IFSZ size was 83.2% for the flat-rim liner. Consideration of BI further reduces the IFROM, the IFSZ size, and the number of the combined position of the pelvis with a non-zero IFSZ size of the hip joint. Importantly, this algorithm provides a reliable tool for personalized prosthesis positioning for THA. This algorithm has excellent applications in personalized surgical planning and surgical robotics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
期刊最新文献
Technological interventions for the suppression of hand tremors: A literature review. A novel preoperative prosthetic position planning algorithm for total hip arthroplasty based on the no-impingement principle: A case study. Analysis and optimization of cortical bone drilling process based on stochastic optimization. Deep learning and robotics enabled approach for audio based emotional pragmatics deficits identification in social communication disorders. Rings in Taylor Spatial Frame: Mechanical testing and finite element analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1