Haytham H Effarah, Trevor Reutershan, Michael W L Seggebruch, Martin Algots, Alexander Amador, Janet Baulch, Olivia G G Drayson, Frederic V Hartemann, Yoonwoo Hwang, Agnese Lagzda, Ferenc Raksi, Charles L Limoli, Christopher P J Barty
{"title":"Preparations for Ultra-High Dose Rate 25-90 MeV Electron Radiation Experiments with a Compact, High-Peak-Current, X-band Linear Accelerator.","authors":"Haytham H Effarah, Trevor Reutershan, Michael W L Seggebruch, Martin Algots, Alexander Amador, Janet Baulch, Olivia G G Drayson, Frederic V Hartemann, Yoonwoo Hwang, Agnese Lagzda, Ferenc Raksi, Charles L Limoli, Christopher P J Barty","doi":"10.1667/RADE-24-00120.1","DOIUrl":null,"url":null,"abstract":"<p><p>The Distributed Charge Compton Source (DCCS) developed by Lumitron Technologies, Inc. has produced a 25-MeV electron beam with 1.7-nC macrobunches at a 100-Hz repetition rate from a compact, high-gradient X-band (11.424 GHz) accelerator. The DCCS is currently being commissioned to produce 100-MeV-class electrons, well within the very high energy electron (VHEE) energy regime, with macrobunch charges of up to 25 nC at repetition rates up to 400 Hz. The DCCS is also designed to produce imaging X rays through Laser Compton scattering. This work aims to describe the preparations for the first dosimetry experimental campaign using this accelerator system at energies ranging from 25 MeV to 90 MeV through hardware development and Monte Carlo (TOPAS) simulation studies. A significant goal of these preparations is to configure the machine so that it can be used to both image with X rays and subsequently treat with VHEEs without movement of the animal model under study. At ultra-high dose rates, this X-ray image-guided electron source could be used to investigate dose-rate dependent differential sparing of normal and malignant biological tissue, known as the FLASH effect. An indium-tin-oxide-coated, 100-μm-thick diamond window was obtained and installed in a custom flange assembly to act as the electron/X-ray vacuum exit window. Simulations at 25 MeV suggest that a scattering foil and collimator can shape the output of the accelerator to produce a 12-mm-diameter, flat-field, circular beam with a 1.7-nC macrobunch charge. This corresponds to an entrance dose of 10 Gy in less than 100 ms. These initial results highly motivate an experimental campaign toward investigating VHEE FLASH using the DCCS at Lumitron Technologies, Inc.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00120.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Distributed Charge Compton Source (DCCS) developed by Lumitron Technologies, Inc. has produced a 25-MeV electron beam with 1.7-nC macrobunches at a 100-Hz repetition rate from a compact, high-gradient X-band (11.424 GHz) accelerator. The DCCS is currently being commissioned to produce 100-MeV-class electrons, well within the very high energy electron (VHEE) energy regime, with macrobunch charges of up to 25 nC at repetition rates up to 400 Hz. The DCCS is also designed to produce imaging X rays through Laser Compton scattering. This work aims to describe the preparations for the first dosimetry experimental campaign using this accelerator system at energies ranging from 25 MeV to 90 MeV through hardware development and Monte Carlo (TOPAS) simulation studies. A significant goal of these preparations is to configure the machine so that it can be used to both image with X rays and subsequently treat with VHEEs without movement of the animal model under study. At ultra-high dose rates, this X-ray image-guided electron source could be used to investigate dose-rate dependent differential sparing of normal and malignant biological tissue, known as the FLASH effect. An indium-tin-oxide-coated, 100-μm-thick diamond window was obtained and installed in a custom flange assembly to act as the electron/X-ray vacuum exit window. Simulations at 25 MeV suggest that a scattering foil and collimator can shape the output of the accelerator to produce a 12-mm-diameter, flat-field, circular beam with a 1.7-nC macrobunch charge. This corresponds to an entrance dose of 10 Gy in less than 100 ms. These initial results highly motivate an experimental campaign toward investigating VHEE FLASH using the DCCS at Lumitron Technologies, Inc.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.