Jinxiang Hu, Mohsen Nayebi Kerdabadi, Xiaohang Mei, Joseph Cappelleri, Richard Barohn, Zijun Yao
{"title":"Recurrent neural networks and attention scores for personalized prediction and interpretation of patient-reported outcomes.","authors":"Jinxiang Hu, Mohsen Nayebi Kerdabadi, Xiaohang Mei, Joseph Cappelleri, Richard Barohn, Zijun Yao","doi":"10.1080/10543406.2025.2469884","DOIUrl":null,"url":null,"abstract":"<p><p>We proposed an Interpretable Personalized Artificial Intelligence (AI) model for PRO measures via Recurrent Neural Networks (RNN) and attention scores, with data from an open label randomized clinical trial of pain in 402 participants with cryptogenic sensory polyneuropathy at 40 neurology care clinics. All patients were assigned to four treatment groups: nortriptyline, duloxetine, pregabalin, and mexiletine. Each patient had 4 PRO measures (quality of life SF-12; PROMIS: pain interference, fatigue, sleep disturbance) at 4 time points (baseline, week 4, week 8, and week 12). We included 201 patients without missing values. Participants were 30 years or older and 106 (52.7%) were men, majority were White (164, 81.6%). We fitted an RNN model with attention scores to the data to predict the PROMIS pain interference score. We evaluated the model performance with Mean Absolute Error (MAE) and R-square statistics. We also used attention scores to explain the global variable importance at model level, and at individual level for each patient. The best predictor of pain score was the SF-12 item (physical and emotional health interfere with social activities) and fatigue item (push yourself to get things done), the biggest drug-level contributor was mexiletine, the biggest time-level contributor was week 12. Overall, the model fit well (MAE = 3.7, R2 = 63%). Attention-RNN is a feasible and reliable model for predicting PRO outcomes utilizing longitudinal data, such as pain, and can provide personalized individual level interpretation.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-11"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2469884","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
We proposed an Interpretable Personalized Artificial Intelligence (AI) model for PRO measures via Recurrent Neural Networks (RNN) and attention scores, with data from an open label randomized clinical trial of pain in 402 participants with cryptogenic sensory polyneuropathy at 40 neurology care clinics. All patients were assigned to four treatment groups: nortriptyline, duloxetine, pregabalin, and mexiletine. Each patient had 4 PRO measures (quality of life SF-12; PROMIS: pain interference, fatigue, sleep disturbance) at 4 time points (baseline, week 4, week 8, and week 12). We included 201 patients without missing values. Participants were 30 years or older and 106 (52.7%) were men, majority were White (164, 81.6%). We fitted an RNN model with attention scores to the data to predict the PROMIS pain interference score. We evaluated the model performance with Mean Absolute Error (MAE) and R-square statistics. We also used attention scores to explain the global variable importance at model level, and at individual level for each patient. The best predictor of pain score was the SF-12 item (physical and emotional health interfere with social activities) and fatigue item (push yourself to get things done), the biggest drug-level contributor was mexiletine, the biggest time-level contributor was week 12. Overall, the model fit well (MAE = 3.7, R2 = 63%). Attention-RNN is a feasible and reliable model for predicting PRO outcomes utilizing longitudinal data, such as pain, and can provide personalized individual level interpretation.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.