Modularity and integration of the neural arch and vertebral centrum in primates.

4区 医学 Q2 Agricultural and Biological Sciences Anatomical Record Pub Date : 2025-03-14 DOI:10.1002/ar.25653
Catalina I Villamil, Emily R Middleton
{"title":"Modularity and integration of the neural arch and vertebral centrum in primates.","authors":"Catalina I Villamil, Emily R Middleton","doi":"10.1002/ar.25653","DOIUrl":null,"url":null,"abstract":"<p><p>The vertebral column consists of multiple homologous elements that have specialized within and between taxa and serve important functions in positional support and as protection for the central nervous system. The study of modularity and integration provides new insights into the evolution of complex structures such as the vertebral column. Patterns of modularity and integration may reflect underlying genetic-developmental patterns and facilitate evolution. Previous studies have identified mixed modularity patterns within and between elements across mammals generally, within primates and carnivorans. Here, we assess modularity within and between elements in the complete post-axial vertebral column in four catarrhine taxa: Macaca (n = 96), Hylobates (n = 77), Pan (n = 92), and Homo (n = 151). We use the Covariance Ratio (CR) to estimate r<sup>2</sup> and the standardized eigenvalues (SVE) variance for comparative purposes. Our results show that there is general, widespread integration within the catarrhine vertebral column, both within and between elements. Hominoids tend to display greater modularity than do macaques, but these estimates are rarely significant. Clusters of modularity in the mid-cervical and upper thoracic regions may relate to special nervous system structures in these areas, and locomotor behaviors in general may influence patterns of modularity in primates. In particular, we find that size is a pervasive factor affecting integration among vertebral elements, though its effects on specific structures are variable. Our results generally do not agree with those found across mammals or within carnivorans, and future studies should focus on genus-level assessments across a variety of taxa.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25653","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The vertebral column consists of multiple homologous elements that have specialized within and between taxa and serve important functions in positional support and as protection for the central nervous system. The study of modularity and integration provides new insights into the evolution of complex structures such as the vertebral column. Patterns of modularity and integration may reflect underlying genetic-developmental patterns and facilitate evolution. Previous studies have identified mixed modularity patterns within and between elements across mammals generally, within primates and carnivorans. Here, we assess modularity within and between elements in the complete post-axial vertebral column in four catarrhine taxa: Macaca (n = 96), Hylobates (n = 77), Pan (n = 92), and Homo (n = 151). We use the Covariance Ratio (CR) to estimate r2 and the standardized eigenvalues (SVE) variance for comparative purposes. Our results show that there is general, widespread integration within the catarrhine vertebral column, both within and between elements. Hominoids tend to display greater modularity than do macaques, but these estimates are rarely significant. Clusters of modularity in the mid-cervical and upper thoracic regions may relate to special nervous system structures in these areas, and locomotor behaviors in general may influence patterns of modularity in primates. In particular, we find that size is a pervasive factor affecting integration among vertebral elements, though its effects on specific structures are variable. Our results generally do not agree with those found across mammals or within carnivorans, and future studies should focus on genus-level assessments across a variety of taxa.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Anatomical Record
Anatomical Record Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
4.30
自引率
0.00%
发文量
0
期刊介绍: The Anatomical Record
期刊最新文献
Modularity and integration of the neural arch and vertebral centrum in primates. High-resolution 7-Tesla magnetic resonance imaging and post-processing for 3-dimensional reconstruction of the membranous labyrinth in healthy adults. A perspective from the Mesozoic: Evolutionary changes of the mammalian skull and their influence on feeding efficiency and high-frequency hearing. Helmeted hornbill cranial kinesis: Balancing mobility and stability in a high-impact joint. Early life functional transitions impact craniofacial morphology in osteogenesis imperfecta.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1