Natasha Rouse, Andrew Horchler, Hillel J Chiel, Kathryn A Daltorio
{"title":"Stable heteroclinic channels as a decision-making model: overcoming low signal-to-noise ratio with mutual inhibition.","authors":"Natasha Rouse, Andrew Horchler, Hillel J Chiel, Kathryn A Daltorio","doi":"10.1088/1748-3190/adc057","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-inspired robot controllers are becoming more complex as we strive to make them more robust to, and flexible in, noisy, real-world environments. A stable heteroclinic network (SHN) is a dynamical system that produces cyclical state transitions using noisy input. SHN-based robot controllers enable sensory input to be integrated at the phase-space level of the controller, thus simplifying sensor-integrated, robot control methods. In this work, we investigate the mechanism that drives branching state trajectories in SHNs. We liken the branching state trajectories to decision-splits imposed into the system, which opens the door for more sophisticated controls -- all driven by sensory input. This work provides guidelines to systematically define an SHN topology, and increase the rate at which desired decision states in the topology are chosen. Ultimately, we are able to control the rate at which desired decision states activate for input signal-to-noise ratios across six orders of magnitude.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adc057","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-inspired robot controllers are becoming more complex as we strive to make them more robust to, and flexible in, noisy, real-world environments. A stable heteroclinic network (SHN) is a dynamical system that produces cyclical state transitions using noisy input. SHN-based robot controllers enable sensory input to be integrated at the phase-space level of the controller, thus simplifying sensor-integrated, robot control methods. In this work, we investigate the mechanism that drives branching state trajectories in SHNs. We liken the branching state trajectories to decision-splits imposed into the system, which opens the door for more sophisticated controls -- all driven by sensory input. This work provides guidelines to systematically define an SHN topology, and increase the rate at which desired decision states in the topology are chosen. Ultimately, we are able to control the rate at which desired decision states activate for input signal-to-noise ratios across six orders of magnitude.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.