{"title":"From fat to fear: how lipid powers cancer spread","authors":"Lionel Larue","doi":"10.1101/gad.352753.125","DOIUrl":null,"url":null,"abstract":"Metastasis and therapy resistance drive cancer-related deaths, with melanoma cells exhibiting phenotypic plasticity that allows them to switch between proliferative and invasive states. In this issue of <em>Genes & Development</em>, Chocarro-Calvo and colleagues (doi:10.1101/gad.351985.124) reveal that oleic acid activates AXL, a receptor involved in metastasis and therapy resistance, linking lipid metabolism to melanoma aggressiveness. They demonstrate that MITF<sup>Low</sup>/AXL<sup>High</sup> cells induce lipolysis in human adipose tissue via WNT5A secretion, compensating for lipid synthesis deficiencies. The study highlights distinct lipid uptake mechanisms in melanoma subpopulations and suggests that targeting AXL-driven lipid uptake could provide therapeutic opportunities. These findings have broad implications, indicating that metabolic cues influence AXL activation in other cancers.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"58 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352753.125","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metastasis and therapy resistance drive cancer-related deaths, with melanoma cells exhibiting phenotypic plasticity that allows them to switch between proliferative and invasive states. In this issue of Genes & Development, Chocarro-Calvo and colleagues (doi:10.1101/gad.351985.124) reveal that oleic acid activates AXL, a receptor involved in metastasis and therapy resistance, linking lipid metabolism to melanoma aggressiveness. They demonstrate that MITFLow/AXLHigh cells induce lipolysis in human adipose tissue via WNT5A secretion, compensating for lipid synthesis deficiencies. The study highlights distinct lipid uptake mechanisms in melanoma subpopulations and suggests that targeting AXL-driven lipid uptake could provide therapeutic opportunities. These findings have broad implications, indicating that metabolic cues influence AXL activation in other cancers.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).