Shank3 modulates Rpl3 expression and protein synthesis via mGlu5: implications for Phelan McDermid syndrome

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Psychiatry Pub Date : 2025-03-15 DOI:10.1038/s41380-025-02947-9
Federica Giona, Stefania Beretta, Antonio Zippo, Alessia Stefanoni, Zaira Tomasoni, Cinzia Vicidomini, Luisa Ponzoni, Mariaelvina Sala, Carrie K. Jones, P. Jeffrey Conn, Tobias M. Boeckers, Carlo Sala, Chiara Verpelli
{"title":"Shank3 modulates Rpl3 expression and protein synthesis via mGlu5: implications for Phelan McDermid syndrome","authors":"Federica Giona, Stefania Beretta, Antonio Zippo, Alessia Stefanoni, Zaira Tomasoni, Cinzia Vicidomini, Luisa Ponzoni, Mariaelvina Sala, Carrie K. Jones, P. Jeffrey Conn, Tobias M. Boeckers, Carlo Sala, Chiara Verpelli","doi":"10.1038/s41380-025-02947-9","DOIUrl":null,"url":null,"abstract":"<p>Mutations or deletions in the SHANK3 gene have been identified in up to 1% of autism spectrum disorder cases and are considered the primary cause of neuropsychiatric symptoms in Phelan McDermid syndrome (PMS). While synaptic dysfunctions have been extensively documented in the absence of Shank3, other mechanisms through which Shank3 may regulate neuronal functions remain unclear. In this study, we report that the ribosomal protein Rpl3 and overall protein synthesis are downregulated in the cortex and striatum of Shank3 knockout (KO) mice and in neurons differentiated from human-induced pluripotent stem cells (hiPSCs) derived from a PMS patient. Moreover, restoring Rpl3 expression in the striatum of Shank3 KO mice was sufficient to rescue protein synthesis and mitigate excessive grooming, suggesting that the behavioral alterations observed in Shank3 KO mice might be, at least in part, caused by Rpl3 downregulation and consequent impaired protein synthesis. Furthermore, we demonstrated that chronic inhibition of mGlu5 is sufficient to reduce Rpl3 expression, which in turn impairs global protein synthesis. Consequently, chronic treatment with VU0409551, a potent and selective mGlu5 positive allosteric modulator, rescues Rpl3 expression and the resulting reduction in protein synthesis, leading to long-lasting improvements in behavioral deficits in Shank3 KO mice Altogether, we propose a new role for Shank3 in modulating Rpl3 protein expression, ribosomal function, and protein synthesis by downregulating mGlu5 receptor activity.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"37 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02947-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mutations or deletions in the SHANK3 gene have been identified in up to 1% of autism spectrum disorder cases and are considered the primary cause of neuropsychiatric symptoms in Phelan McDermid syndrome (PMS). While synaptic dysfunctions have been extensively documented in the absence of Shank3, other mechanisms through which Shank3 may regulate neuronal functions remain unclear. In this study, we report that the ribosomal protein Rpl3 and overall protein synthesis are downregulated in the cortex and striatum of Shank3 knockout (KO) mice and in neurons differentiated from human-induced pluripotent stem cells (hiPSCs) derived from a PMS patient. Moreover, restoring Rpl3 expression in the striatum of Shank3 KO mice was sufficient to rescue protein synthesis and mitigate excessive grooming, suggesting that the behavioral alterations observed in Shank3 KO mice might be, at least in part, caused by Rpl3 downregulation and consequent impaired protein synthesis. Furthermore, we demonstrated that chronic inhibition of mGlu5 is sufficient to reduce Rpl3 expression, which in turn impairs global protein synthesis. Consequently, chronic treatment with VU0409551, a potent and selective mGlu5 positive allosteric modulator, rescues Rpl3 expression and the resulting reduction in protein synthesis, leading to long-lasting improvements in behavioral deficits in Shank3 KO mice Altogether, we propose a new role for Shank3 in modulating Rpl3 protein expression, ribosomal function, and protein synthesis by downregulating mGlu5 receptor activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
期刊最新文献
Shank3 modulates Rpl3 expression and protein synthesis via mGlu5: implications for Phelan McDermid syndrome Neuroimaging changes in major depression with brief computer-assisted cognitive behavioral therapy compared to waitlist S-ketamine exposure in early postnatal period induces social deficit mediated by excessive microglial synaptic pruning Bidirectional emotional regulation through prefrontal innervation of the locus coeruleus Neuroinflammatory fluid biomarkers in patients with Alzheimer’s disease: a systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1