{"title":"Antibiotic-Modified Nanoparticles Combined with Lysozyme for Rapid Extraction of Pathogenic Bacteria DNA in Blood","authors":"Yong Li, Yanwen Qi, Jiaqi Liu, Pengyu Wang, Jiayu Zheng, Xiangyu Chen, Ye Wang, Xiaowen Zhao, Yingqiu Xie, Chao Shi, Cuiping Ma","doi":"10.1021/acs.analchem.4c07066","DOIUrl":null,"url":null,"abstract":"Rapid and precise identification of the pathogens causing sepsis remains a significant diagnostic challenge. Blood culture is time-consuming and insensitive, while molecular diagnostic techniques, such as the polymerase chain reaction (PCR), are fast but greatly influenced by template quality. Here, we present a new approach to separate trace amounts of pathogen DNA from blood, which utilizes lysozyme to destroy bacteria and release DNA, followed by enrichment and purification using magnetic nanoparticles (MNPs) modified with kanamycin (Kan) or tobramycin (TM). We demonstrate that the prepared Kan@MNPs and TM@MNPs can efficiently adsorb DNA, with the mechanism involving interaction with the minor groove of DNA. Notably, the adoption of lysozyme ensures bacterial lysis while avoiding damage to blood cells, minimizing the interference from human genomic DNA background and inhibitory components, thereby obtaining relatively pure bacterial DNA. For artificially infected whole blood samples, our method shortens the sample processing time to 35 min and achieves a 10-fold improvement in PCR sensitivity compared to a commercial kit. Through clinical evaluation of blood samples collected from suspected infected patients, we identified positive samples that were 100% consistent with the clinical practice. Therefore, this method holds promising potential for clinical application in advancing rapid sepsis diagnosis and earlier interventions.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"183 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c07066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and precise identification of the pathogens causing sepsis remains a significant diagnostic challenge. Blood culture is time-consuming and insensitive, while molecular diagnostic techniques, such as the polymerase chain reaction (PCR), are fast but greatly influenced by template quality. Here, we present a new approach to separate trace amounts of pathogen DNA from blood, which utilizes lysozyme to destroy bacteria and release DNA, followed by enrichment and purification using magnetic nanoparticles (MNPs) modified with kanamycin (Kan) or tobramycin (TM). We demonstrate that the prepared Kan@MNPs and TM@MNPs can efficiently adsorb DNA, with the mechanism involving interaction with the minor groove of DNA. Notably, the adoption of lysozyme ensures bacterial lysis while avoiding damage to blood cells, minimizing the interference from human genomic DNA background and inhibitory components, thereby obtaining relatively pure bacterial DNA. For artificially infected whole blood samples, our method shortens the sample processing time to 35 min and achieves a 10-fold improvement in PCR sensitivity compared to a commercial kit. Through clinical evaluation of blood samples collected from suspected infected patients, we identified positive samples that were 100% consistent with the clinical practice. Therefore, this method holds promising potential for clinical application in advancing rapid sepsis diagnosis and earlier interventions.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.