Impact of Hexagonal Boron Nitride Encapsulation on the Photophysical Dynamics of MAPbI3 Perovskite Crystals

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-03-15 DOI:10.1021/acs.jpclett.4c03715
Yong Yang, Ruiyun Chen, Min Yang, Lei Xi, Zhihao Chen, Zhichun Yang, Guofeng Zhang, Chengbing Qin, Jianyong Hu, Liantuan Xiao, Suotang Jia
{"title":"Impact of Hexagonal Boron Nitride Encapsulation on the Photophysical Dynamics of MAPbI3 Perovskite Crystals","authors":"Yong Yang, Ruiyun Chen, Min Yang, Lei Xi, Zhihao Chen, Zhichun Yang, Guofeng Zhang, Chengbing Qin, Jianyong Hu, Liantuan Xiao, Suotang Jia","doi":"10.1021/acs.jpclett.4c03715","DOIUrl":null,"url":null,"abstract":"Metal halide perovskites are known to suffer from instability due to their high sensitivity to external stimuli. Although encapsulation can considerably improve their stability, the impact of encapsulation on the intrinsic photophysical properties of perovskites remains unclear. Here, we investigate the effect of hexagonal boron nitride (hBN) encapsulation on the photoluminescence (PL) dynamics of MAPbI<sub>3</sub> perovskite crystals at the individual crystal level. The results demonstrate that hBN encapsulation leads to PL decline, PL lifetime shortening, and spectral broadening in MAPbI<sub>3</sub> crystals, which can be ascribed to the stress exerted by hBN encapsulation on MAPbI<sub>3</sub> crystals that promotes defect formation and subsequent nonradiative recombination losses. Furthermore, although hBN encapsulation can delay degradation, the effect of hBN-induced stress and the poor sealing due to single-sided encapsulation would further broaden the spectra over time. This work provides new insights into the photophysical effects of encapsulation on perovskites and has significance for the selection of perovskite encapsulation strategies.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"69 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03715","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal halide perovskites are known to suffer from instability due to their high sensitivity to external stimuli. Although encapsulation can considerably improve their stability, the impact of encapsulation on the intrinsic photophysical properties of perovskites remains unclear. Here, we investigate the effect of hexagonal boron nitride (hBN) encapsulation on the photoluminescence (PL) dynamics of MAPbI3 perovskite crystals at the individual crystal level. The results demonstrate that hBN encapsulation leads to PL decline, PL lifetime shortening, and spectral broadening in MAPbI3 crystals, which can be ascribed to the stress exerted by hBN encapsulation on MAPbI3 crystals that promotes defect formation and subsequent nonradiative recombination losses. Furthermore, although hBN encapsulation can delay degradation, the effect of hBN-induced stress and the poor sealing due to single-sided encapsulation would further broaden the spectra over time. This work provides new insights into the photophysical effects of encapsulation on perovskites and has significance for the selection of perovskite encapsulation strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Intrafacet Charge Separation toward Efficient Overall Water Splitting on SrTiO3 Single Crystal Photocatalysts Impact of Hexagonal Boron Nitride Encapsulation on the Photophysical Dynamics of MAPbI3 Perovskite Crystals Mechanistic Insights into the Reactive Uptake of Bromine Nitrate at the Air–Water Interface: Interplay between Halogen Bonding and Solvation Combining Multiple-Element Doping of LiCoO2 and Bilayer Electrolytes for 4.6 V High-Voltage All-Solid-State Lithium Batteries Ab Initio Atomistic Characterization of Confined Bulk and Bennett Plasmons in Metallic Nanoparticles as Probed by Penetrating Electrons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1