Superhydrophobic fire-extinguishing polyurethane foam for solar-assisted high-efficiency recovery of viscous crude oil spill

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-03-15 DOI:10.1016/j.seppur.2025.132531
Jianhao Zhu, Menghe Zhu, Jinyang Li, Xinliang Liu, Ying Wang, Xilei Chen, Lei Liu, Pingan Song
{"title":"Superhydrophobic fire-extinguishing polyurethane foam for solar-assisted high-efficiency recovery of viscous crude oil spill","authors":"Jianhao Zhu, Menghe Zhu, Jinyang Li, Xinliang Liu, Ying Wang, Xilei Chen, Lei Liu, Pingan Song","doi":"10.1016/j.seppur.2025.132531","DOIUrl":null,"url":null,"abstract":"Frequent offshore crude oil spill accidents pose a significant threat to marine ecosystems and coastal communities. Due to the high viscosity and poor fluidity of crude oil, there is an urgent need for polyurethane foam with excellent photothermal properties and oil–water separation capabilities to facilitate crude oil absorption. However, the flammability of PU foam greatly restricts its application when faced with fire scenarios in offshore petrochemical spill incidents. To solve these challenges, a flame-retardant superhydrophobic-superoleophilic polyurethane foam (PDMS@PLP@MXene@PU) is designed by assembling dual photothermal layers and flame retardant onto the foam structure via electrostatic attraction and hydrogen bonding. The results show that PDMS@PLP@MXene@PU exhibits superhydrophobic properties (water contact angle = 162.4°) and crude oil absorption capacity (64.2 g/g). The compressive strength of the PDMS@PLP@MXene is enhanced by 83.9 %. PDMS@PLP@MXene@PU exhibits good photothermal effect and thermal conductivity, which can rapidly rise to 80.0 °C under 1 kW/m<sup>2</sup> solar irradiation with a maximum oil absorption rate of ∼ 98 %. PDMS@PLP@MXene@PU can self-extinguish a flame with 52.7 % and 71.4 % reductions in peak heat release rate and total smoke production, respectively. This work offers a facile strategy for creating high-performance polyurethane foam to address crude oil spills.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"9 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.132531","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Frequent offshore crude oil spill accidents pose a significant threat to marine ecosystems and coastal communities. Due to the high viscosity and poor fluidity of crude oil, there is an urgent need for polyurethane foam with excellent photothermal properties and oil–water separation capabilities to facilitate crude oil absorption. However, the flammability of PU foam greatly restricts its application when faced with fire scenarios in offshore petrochemical spill incidents. To solve these challenges, a flame-retardant superhydrophobic-superoleophilic polyurethane foam (PDMS@PLP@MXene@PU) is designed by assembling dual photothermal layers and flame retardant onto the foam structure via electrostatic attraction and hydrogen bonding. The results show that PDMS@PLP@MXene@PU exhibits superhydrophobic properties (water contact angle = 162.4°) and crude oil absorption capacity (64.2 g/g). The compressive strength of the PDMS@PLP@MXene is enhanced by 83.9 %. PDMS@PLP@MXene@PU exhibits good photothermal effect and thermal conductivity, which can rapidly rise to 80.0 °C under 1 kW/m2 solar irradiation with a maximum oil absorption rate of ∼ 98 %. PDMS@PLP@MXene@PU can self-extinguish a flame with 52.7 % and 71.4 % reductions in peak heat release rate and total smoke production, respectively. This work offers a facile strategy for creating high-performance polyurethane foam to address crude oil spills.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Mechanisms of contaminant removal with metallic iron (Fe0): A comprehensive and critical review Superhydrophobic fire-extinguishing polyurethane foam for solar-assisted high-efficiency recovery of viscous crude oil spill Electrocatalytic nanocomposite flow-through porous electrodes with sputter-coated Cu/Co nanoparticles for degradation of waterborne perfluorooctanoic acid Self-supported cathode based microbial electro-Fenton for water disinfection: The synergistic inactivation mechanism of biological and electrochemical oxidation Tailored design of nanofiltration membrane with MoS2 quantum dots for enhancing selectivity and scaling resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1