{"title":"Scaling process intensification technologies: what does it take to deploy?","authors":"Daria C. Boffito","doi":"10.1016/j.cep.2025.110275","DOIUrl":null,"url":null,"abstract":"<div><div>Process intensification (PI) has emerged as a transformative approach to enhancing efficiency, sustainability, and economics across chemical and manufacturing industries. However, within its dedicated communities, there is recognition of a persistent gap in transitioning these innovations from laboratory-scale success to widespread industrial adoption. Scaling up PI technologies is far more complex than simply replicating laboratory conditions on a larger scale. Challenges such as the integration with existing units and processes, proving economic viability, and navigating regulatory requirements often impede the practical implementation of PI innovations. This paper aims to identify the key enablers for scaling up PI technologies by presenting a roadmap to bridge the gap between concept and commercialization. While robust engineering design frameworks and advanced modeling tools are crucial, interdisciplinary collaborations and lab-to-market partnerships (or integrated scaling collaborations) are equally critical to drive the successful adoption of PI at the industrial scale.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"212 ","pages":"Article 110275"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001242","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Process intensification (PI) has emerged as a transformative approach to enhancing efficiency, sustainability, and economics across chemical and manufacturing industries. However, within its dedicated communities, there is recognition of a persistent gap in transitioning these innovations from laboratory-scale success to widespread industrial adoption. Scaling up PI technologies is far more complex than simply replicating laboratory conditions on a larger scale. Challenges such as the integration with existing units and processes, proving economic viability, and navigating regulatory requirements often impede the practical implementation of PI innovations. This paper aims to identify the key enablers for scaling up PI technologies by presenting a roadmap to bridge the gap between concept and commercialization. While robust engineering design frameworks and advanced modeling tools are crucial, interdisciplinary collaborations and lab-to-market partnerships (or integrated scaling collaborations) are equally critical to drive the successful adoption of PI at the industrial scale.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.